73 research outputs found

    Spectral index variation across X-shaped radio galaxies

    Full text link
    The formation mechanism of the enigmatic subclass of radio galaxies, called 'X-shaped radio galaxies' (XRGs), or 'winged' radio galaxies, which account for ∼10%\sim 10\% of the radio galaxy population, can be effectively constrained using the radio spectral-index distribution across their twin pairs of radio lobes. If indeed, the existing claims of no systematic spectral index difference between the wing and the associated primary lobe are valid in general, this would provide impetus to the XRG model attributing their origin to an unresolved binary of active supermassive black holes within the nucleus of the host galaxy. To investigate this interesting possibility, we have mapped spatial variation of spectral index for a well-defined sample of 25 XRGs, by combining their 1.4 GHz VLA (FIRST survey)/uGMRT maps with their 144 MHz maps (LoTSS-DR2). This has yielded the best available combination of sensitivity, angular resolution, frequency range and sample size, for spectral mapping of an XRG sample. A rich diversity of spectral index patterns is thus revealed in our XRG sample, but we find at most one case where a secondary lobe (wing) exhibits a flatter spectrum compared to its associated primary lobe. We conclude that such a spectral pattern is exceedingly rare and by no means a common trait of XRGs.Comment: 20 pages, 2 figures, 2 tables, accepted for publication in MNRA

    Bacterial community structure analysis of soil treated with Parthenium hysterophorus L. derived green medium

    Get PDF
    The present study encompasses the analysis of bacterial community structure of soil in the presence of Parthenium hysterophorus derived green medium. The 16S microbiome profiling of the soil revealed that it consists of members from 15 bacterial phyla with the most prominent being Proteobacteria. The other predominant phyla were Plantomycetes, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi and Firmicutes. The maximum proportion of the bacterial community remained unclassified at genus and species level. Among the classified population the maximum number of bacteria belonged to Flavisolibacter followed by Kaistobacter, Bacillus, Optitutus, Balneimonas, Steroidobacter, Rhodoplanes and Gemmata

    Catching butterflies in the sky: Extended catalog of winged or X-shaped radio sources from the latest FIRST data release

    Get PDF
    We present a catalog of 290 "winged" or X-shaped radio galaxies (XRGs) extracted from the latest (2014 December 17) data release of the "Very Large Array Faint Images of the Radio Sky at Twenty centimeter." We have combined these radio images with their counterparts in the TIFR GMRT sky survey at 150 MHz, in an attempt to identify any low surface brightness radio emission present in these sources. This has enabled us to assemble a sample of 106 "strong" XRG candidates and 184 "probable" XRG candidates whose XRG designation needs to be verified by further observations. The present sample of 290 XRG candidates is almost twice as large as the number of XRGs currently known. Twenty-five of our 290 XRG candidates (9 "strong" and 16 "probable") are identified as quasars. Double-peaked narrow emission lines are seen in the optical spectra of three of the XRG candidates (two "strong" and one "probable"). Nearly 90% of the sample is located in the FR II domain of the Owen-Ledlow diagram. A few of the strong XRG candidates have a rather flat radio spectrum (spectral index alpha flatter than -0.3) between 150 MHz and 1.4 GHz, or between 1.4 and 5 GHz. Since this is not expected for lobe-dominated extragalactic radio sources (like nearly all known XRGs), these sources are particularly suited for follow-up radio imaging and near-simultaneous measurement of the radio spectrum.Comment: 22 pages, 9 figures, 3 tables, accepted for publication in ApJ

    Plant growth promoting traits of psychrotolerant bacteria: A boon for agriculture in hilly terrains

    Get PDF
    Plant growth promoting bacteria (PGPB) are well known to promote plant growth in a number of ways. It is important to study plant growth promoting potential of bacteria capable of growing in extreme environments to establish their role in promoting agricultural yield under harsh conditions. Psychrophilic or psychrotolerant bacteria with plant growth promoting traits may improve the quality of agricultural practices in hilly terrain. The agricultural importance of such microbes stems from the fact that the world over temperate agro-ecosystems are characterized by low temperatures and short growing seasons that subject both plant and microbial life to cold temperature induced stress. Hence, there is a need to identify potential microbes that retain their functional traits under low temperature conditions. Such microbes can be used to enhance the agricultural yields in low temperature areas of the world. This review describes plant growth promoting activities identified in cold adapted bacteria

    Rapid optical variability of TeV blazars

    Get PDF
    In this first systematic attempt to characterise the intranight optical variability (INOV) of TeV detected blazars, we have monitored a well defined set of 9 TeV blazars on total 26 nights during 2004-2010. In this R (or V)-band monitoring programme only one blazar was monitored per night for a minimum duration of 4 hours. Using the CCD, an INOV detection threshold of ~ 1-2 % was achieved in the densely sampled DLCs. We have further expanded the sample by including another 13 TeV blazars from literature. This enlarged sample of 22 TeV blazars, monitored on a total of 116 nights (including 55 nights newly reported here), has enabled us to arrive at the first estimate of the INOV duty cycle of TeV detected blazars. Applying the C-test, the INOV DC is found to be 59 %, which decreases to 47 % if only INOV fractional amplitudes above 3 % are considered. These observations also permit, for the first time, a comparison of the INOV characteristics of the two major subclasses of TeV detected BL Lacs, namely LBLs and HBLs, for which we find the INOV DCs to be ~ 63 % and ~ 38 %, respectively. This demonstrates that the INOV differential between LBLs and HBLs persists even when only their TeV detected subsets are considered. Despite dense sampling, the intranight light curves of the 22 TeV blazars have not revealed even a single feature on time scale substantially shorter than 1 hour, even though the inner jets of TeV blazars are believed to have exceptionally large bulk Lorentz factors (and correspondingly stronger time compression). An intriguing feature, clearly detected in the light curve of the HBL J1555+1111, is a 4 per cent `dip' on a 1 hour timescale. This unique feature could have arisen from absorption in a dusty gas cloud, occulting a superluminally moving optical knot in the parsec scale jet of this relatively luminous BL Lacs object.Comment: 39 pages, 3 figures, accepted for publication in MNRA

    Intra-night optical variability of core dominated radio quasars: the role of optical polarization

    Get PDF
    Context. Rapid variations in optical flux are seen in many quasars and all blazars. The amount of variability in different classes of active galactic nuclei has been studied extensively but many questions remain unanswered. Aims. We present the results of a long-term programme to investigate the intra-night optical variability (INOV) of powerful flat spectrum radio core-dominated quasars (CDQs), with a focus on probing the relationship of INOV to the degree of optical polarization. Methods. We observed a sample of 16 bright CDQs showing strong broad optical emission lines and consisting of both high and low optical polarization quasars (HPCDQs and LPCDQs). In this first systematic study of its kind, we employed the 104-cm Sampurnanand telescope, the 201-cm Himalayan Chandra telescope and the 200-cm IUCAA-Girawali Observatory telescope, to carry out R-band monitoring on a total of 47 nights. Using the CCD as an N-star photometer to densely monitor each quasar for a minimum duration of about 4 h per night, INOV exceeding ~1–2 per cent could be reliably detected. Combining these INOV data with those taken from the literature, after ensuring conformity with the basic selection criteria we adopted for the 16 CDQs monitored by us, we were able to increase the sample size to 21 CDQs (12 LPCDQs and 9 HPCDQs) monitored on a total of 73 nights. Results. As the existence of a prominent flat-spectrum radio core signifies that strong relativistic beaming is present in all these CDQs, the definitions of the two sets differ primarily in fractional optical polarization, with the LPCDQs showing a very low median Pop ≃ 0.4 per cent. Our study yields an INOV duty cycle (DC) of ~28 per cent for the LPCDQs and ~68 percent for HPCDQs. If only strong INOV with fractional amplitude above 3 per cent is considered, the corresponding DCs are ~7 per cent and ~40 per cent, respectively. Conclusions. From this strong contrast between the two classes of luminous, relativistically beamed quasars, it is apparent that relativistic beaming is normally not a sufficient condition for strong INOV and a high optical polarization is the other necessary condition. Moreover, the correlation is found to persist for many years after the polarization measurements were made. Some possible implications of this result are pointed out, particularly in the context of the recently detected rapid γ-ray variability of blazars
    • …
    corecore