5,879 research outputs found
SOED Open Course: Seamless Modeling from Creek to Ocean on Unstructured Grids
This course explains the basic formulations used in the cross-scale SCHISM model, including the recent new developments. Hands-on tutorials will be conducted to familiarize the trainees with the basic tools useful for the modeling system. Although no formal pre-requisites are expected, trainees with prior UG model experience may find it easier to learn. Upon completion the trainees will have acquired basic knowledge on workflow in typical SCHISM simulations and be able to conduct simulations for cross-scale baroclinic processes as found in geophysical fluid dynamics (GFD)
Use Windows Media Player
Phospholemman: a novel cardiac stress protein.
Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca(2+) channel. Therefore, PLM occupies a key modulatory role in intracellular Na(+) and Ca(2+) homeostasis and is intimately involved in regulation of excitation-contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na(+) overload and simultaneously preserves inotropy by inhibiting Na(+)/Ca(2+) exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and potentially L-type Ca(2+) channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189-196
The Blue Emission at 2.8 EV in Strontium Titanate: Evidence for a Radiative Transition of Self-Trapped Excitons from Unbound States
The origin of the blue emission in SrTiO3 has been investigated as a function of irradiation fluence, electronic excitation density, and temperature using a range of ion energies and masses. The emission clearly does not show correlation with the concentration of vacancies generated by irradiation but is greatly enhanced under heavy-ion irradiation. The intensity ratio of the 2.8 and 2.5 eV bands is independent of fluence at all temperatures, but it increases with excitation rate. The 2.8 eV emission is proposed to correspond to a transition from conduction band states to the ground state level of the self-trapped exciton center
Orbital Dimer Model for Spin-Glass State in YMoO
The formation of a spin glass usually requires both structural disorder and
frustrated magnetic interactions. Consequently, the origin of spin-glass
behaviour in YMoO in which magnetic Mo ions occupy a
frustrated pyrochlore lattice with minimal compositional disorder has been
a longstanding question. Here, we use neutron and X-ray pair-distribution
function (PDF) analysis to develop a disorder model that resolves apparent
incompatibilities between previously-reported PDF, EXAFS and NMR studies and
provides a new and physical mechanism for spin-glass formation. We show that
Mo ions displace according to a local "2-in/2-out" rule on each Mo
tetrahedron, driven by orbital dimerisation of Jahn-Teller active Mo
ions. Long-range orbital order is prevented by the macroscopic degeneracy of
dimer coverings permitted by the pyrochlore lattice. Cooperative O
displacements yield a distribution of MoOMo angles, which in turn
introduces disorder into magnetic interactions. Our study demonstrates
experimentally how frustration of atomic displacements can assume the role of
compositional disorder in driving a spin-glass transition.Comment: 6 pages, 3 figure
Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates
Within the t-t'-J model, the electron spectrum and quasiparticle dispersion
in doped bilayer cuprates in the normal state are discussed by considering the
bilayer interaction. It is shown that the bilayer interaction splits the
electron spectrum of doped bilayer cuprates into the bonding and antibonding
components around the point. The differentiation between the bonding
and antibonding components is essential, which leads to two main flat bands
around the point below the Fermi energy. In analogy to the doped
single layer cuprates, the lowest energy states in doped bilayer cuprates are
located at the point. Our results also show that the striking
behavior of the electronic structure in doped bilayer cuprates is intriguingly
related to the bilayer interaction together with strong coupling between the
electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and
discussions, accepted for publication in Phys. Rev.
Microscopic Polarization in Bilayer Graphene
Bilayer graphene has drawn significant attention due to the opening of a band
gap in its low energy electronic spectrum, which offers a promising route to
electronic applications. The gap can be either tunable through an external
electric field or spontaneously formed through an interaction-induced symmetry
breaking. Our scanning tunneling measurements reveal the microscopic nature of
the bilayer gap to be very different from what is observed in previous
macroscopic measurements or expected from current theoretical models. The
potential difference between the layers, which is proportional to charge
imbalance and determines the gap value, shows strong dependence on the disorder
potential, varying spatially in both magnitude and sign on a microscopic level.
Furthermore, the gap does not vanish at small charge densities. Additional
interaction-induced effects are observed in a magnetic field with the opening
of a subgap when the zero orbital Landau level is placed at the Fermi energy
Doping-Dependent and Orbital-Dependent Band Renormalization in Ba(Fe_1-xCo_x)_2As_2 Superconductors
Angle resolved photoemission spectroscopy of Ba(Fe1-xCox)2As2 (x = 0.06,
0.14, and 0.24) shows that the width of the Fe 3d yz/zx hole band depends on
the doping level. In contrast, the Fe 3d x^2-y^2 and 3z^2-r^2 bands are rigid
and shifted by the Co doping. The Fe 3d yz/zx hole band is flattened at the
optimal doping level x = 0.06, indicating that the band renormalization of the
Fe 3d yz/zx band correlates with the enhancement of the superconducting
transition temperature. The orbital-dependent and doping-dependent band
renormalization indicates that the fluctuations responsible for the
superconductivity is deeply related to the Fe 3d orbital degeneracy.Comment: 5 pages, 4 figure
Activation of Human Stearoyl-Coenzyme A Desaturase 1 Contributes to the Lipogenic Effect of PXR in HepG2 Cells
The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1), long chain free fatty acid elongase (FAE), and lecithin-cholesterol acyltransferase (LCAT), while the expression of acyl:cholesterol acetyltransferase(ACAT1) was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR), the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE) response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene. Β© 2013 Zhang et al
Disparities and risks of sexually transmissible infections among men who have sex with men in China: a meta-analysis and data synthesis.
BACKGROUND: Sexually transmitted infections (STIs), including Hepatitis B and C virus, are emerging public health risks in China, especially among men who have sex with men (MSM). This study aims to assess the magnitude and risks of STIs among Chinese MSM. METHODS: Chinese and English peer-reviewed articles were searched in five electronic databases from January 2000 to February 2013. Pooled prevalence estimates for each STI infection were calculated using meta-analysis. Infection risks of STIs in MSM, HIV-positive MSM and male sex workers (MSW) were obtained. This review followed the PRISMA guidelines and was registered in PROSPERO. RESULTS: Eighty-eight articles (11 in English and 77 in Chinese) investigating 35,203 MSM in 28 provinces were included in this review. The prevalence levels of STIs among MSM were 6.3% (95% CI: 3.5-11.0%) for chlamydia, 1.5% (0.7-2.9%) for genital wart, 1.9% (1.3-2.7%) for gonorrhoea, 8.9% (7.8-10.2%) for hepatitis B (HBV), 1.2% (1.0-1.6%) for hepatitis C (HCV), 66.3% (57.4-74.1%) for human papillomavirus (HPV), 10.6% (6.2-17.6%) for herpes simplex virus (HSV-2) and 4.3% (3.2-5.8%) for Ureaplasma urealyticum. HIV-positive MSM have consistently higher odds of all these infections than the broader MSM population. As a subgroup of MSM, MSW were 2.5 (1.4-4.7), 5.7 (2.7-12.3), and 2.2 (1.4-3.7) times more likely to be infected with chlamydia, gonorrhoea and HCV than the broader MSM population, respectively. CONCLUSION: Prevalence levels of STIs among MSW were significantly higher than the broader MSM population. Co-infection of HIV and STIs were prevalent among Chinese MSM. Integration of HIV and STIs healthcare and surveillance systems is essential in providing effective HIV/STIs preventive measures and treatments. TRIAL REGISTRATION: PROSPERO NO: CRD42013003721
- β¦