159 research outputs found

    Spatial patterns and behaviour of notothenioid fishes off the northern Antarctic Peninsula

    Get PDF
    A photographic seabed survey conducted off the Antarctic Peninsula region provided the opportunity to study spatial patterns, abundance and behaviour of the notothenioid benthic fish fauna. Overall, a total of 12,715 images taken with the Ocean Floor Observation System (OFOS) along 26 transects in three ecoregions (Joinville Island, Bransfield Strait and Drake Passage) were analysed. The fish fauna consisted of at least 34 species belonging to four families of both low-Antarctic and high-Antarctic origin. Nototheniids showed the highest relative abundance and species richness, followed by channichthyids, bathydraconids and artedidraconids. Direct in-situ observations in OFOS seabed images allowed descriptions of fish behaviour, such as aggregation of individuals (Notothenia coriiceps), specific body postures (Cygnodraco mawsoni and Cryodraco antarcticus) and parental care (Chaenodraco wilsoni, Chionodraco rastrospinosus, Pagetopsis macropterus and Trematomus hansoni). Fish density and species richness was primarily correlated with the occurrence of bryozoans, ascidians, and large cup-shaped sponges, providing a three-dimensional habitat suitable for fish settling, foraging, breeding and refuge from predators. Fish diversity was higher (a) off Joinville Island and in Bransfield Strait than in Drake Passage, where almost exclusively low-Antarctic species were recorded, and (b) between 100 and 600 m than at greater depths. Overall, the benthic fish fauna off the northern Antarctic Peninsula is zoogeographically composite and widespread, with well-structured spatial partitioning

    Gametogenesis in the dragonfishes Akarotaxis nudiceps

    Get PDF

    Decadal Trends in Abundance, Size and Condition of Antarctic Toothfish in McMurdo Sound, Antarctica, 1972-2010

    Get PDF
    We report analyses of a dataset spanning 38 years of near-annual fishing for Antarctic toothfish Dissostichus mawsoni, using a vertical setline through the fast ice of McMurdo Sound, Antarctica, 1972-2010. This constitutes one of the longest biological time series in the Southern Ocean, and certainly the longest for any fish. Fish total length, condition and catch per unit effort (CPUE) were derived from the more than 5500 fish caught. Contrary to expectation, length-frequency was dominated by fish in the upper half of the industrial catch. The discrepancy may be due to biases in the sampling capabilities of vertical (this study) versus benthic (horizontal) fishing gear (industry long lines), related to the fact that only large Antarctic toothfish (more than 100 cm TL) are neutrally buoyant and occur in the water column. Fish length and condition increased from the early 1970s to the early 1990s and then decreased, related to sea ice cover, with lags of 8 months to 5 years, and may ultimately be related to the fishery (which targets large fish) and changes in the Southern Annular Mode through effects on toothfish main prey, Antarctic silverfish Pleuragramma antarcticum. CPUE was constant through 2001 and then decreased dramatically, likely related to the industrial fishery, which began in 1996 and which concentrates effort over the Ross Sea slope, where tagged McMurdo fish have been found. Due to limited prey choices and, therefore, close coupling among mesopredators of the Ross Sea, Antarctic toothfish included, the fishery may be altering the trophic structure of the Ross Sea

    Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes

    Get PDF
    The Southern Ocean around Antarctica is among the most rapidly warming regions on Earth, but has experienced episodic climate change during the past 40 million years. It remains unclear how ancient periods of climate change have shaped Antarctic bio-diversity. The origin of antifreeze glycoproteins (AFGPs) in Antarctic notothenioid fishes has become a classic example of how the evolution of a key innovation in response to climate change can drive adaptive radiation. By using a time-calibrated molecular phylogeny of notothenioids and reconstructed paleoclimate, we demonstrate that the origin of AFGP occurred between 42 and 22 Ma, which includes a period of global cooling approximately 35 Ma. However, the most species-rich lineages diversified and evolved significant ecological differences at least 10 million years after the origin of AFGPs, during a second cooling event in the Late Miocene (11.6-5.3 Ma). This pattern indicates that AFGP was not the sole trigger of the notothenioid adaptive radiation. Instead, the bulk of the species richness and ecological diversity originated during the Late Miocene and into the Early Pliocene, a time co-incident with the origin of polar conditions and increased ice activity in the Southern Ocean. Our results challenge the current understanding of the evolution of Antarctic notothenioids suggesting that the ecological opportunity that underlies this adaptive radiation is not linked to a single trait, but rather to a combination of freeze avoidance offered by AFGPs and subsequent exploitation of new habitats and open niches created by increased glacial and ice sheet activity.Fil: Near, Thomas. University of Yale; Estados UnidosFil: Dornburg, Alex. University of Yale; Estados UnidosFil: Kuhn, K.. University of Yale; Estados UnidosFil: Eastman,Joseph T.. Ohio State University; Estados UnidosFil: Pennington, Jillian N.. University of Yale; Estados UnidosFil: Patarnello, Tomaso. Università di Padova; ItaliaFil: Zane, Lorenzo. Università di Padova; ItaliaFil: Fernandez, Daniel Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Jones, Christopher D.. National Oceanic And Atmospheric Administration; Estados Unido

    Spatial distribution and habitat preferences of demersal fish assemblages in the southeastern Weddell Sea (Southern Ocean)

    Get PDF
    Our knowledge on distribution, habitats and behavior of Southern Ocean fishes living at water depths beyond scuba-diving limits is still sparse, as it is difficult to obtain quantitative data on these aspects of their biology. Here, we report the results of an analysis of seabed images to investigate species composition, behavior, spatial distribution and preferred habitats of demersal fish assemblages in the southern Weddell Sea. Our study was based on a total of 2736 high-resolution images, covering a total seabed area of 11,317 m2, which were taken at 13 stations at water depths between 200 and 750 m. Fish were found in 380 images. A total of 379 notothenioid specimens were recorded, representing four families (Nototheniidae, Artedidraconidae, Bathydraconidae, Channichthyidae), 17 genera and 25 species. Nototheniidae was the most speciose fam- ily, including benthic species (Trematomus spp.) and the pelagic species Pleuragramma antarctica, which was occasionally recorded in dense shoals. Bathydraconids ranked second with six species, followed by artedidraconids and channichthyids, both with five species. Most abundant species were Trematomus scotti and T. lepidorhinus among nototheniids, and Dol- loidraco longedorsalis and Pagetopsis maculatus among artedidraconids and channichthyids, respectively. Both T. lepi- dorhinus and P. maculatus preferred seabed habitats characterized by biogenous debris and rich epibenthic fauna, whereas T. scotti and D. longedorsalis were frequently seen resting on fine sediments and scattered gravel. Several fish species were recorded to make use of the three-dimensional structure formed by epibenthic foundation species, like sponges, for perching or hiding inside. Nesting behavior was observed, frequently in association with dropstones, in species from various families, including Channichthyidae (Chaenodraco wilsoni and Pagetopsis macropterus) and Bathydraconidae (Cygnodraco mawsoni)

    KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra

    Get PDF
    We announce the discovery of a highly inflated transiting hot Jupiter discovered by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with Teff=575455+54T_{\rm eff} = 5754_{-55}^{+54} K, logg=4.0780.054+0.049\log{g} = 4.078_{-0.054}^{+0.049}, [Fe/H]=0.272±0.038[Fe/H] = 0.272\pm0.038, an inferred mass M=1.2110.066+0.078M_{*}=1.211_{-0.066}^{+0.078} M_{\odot}, and radius R=1.670.12+0.14R_{*}=1.67_{-0.12}^{+0.14} R_{\odot}. The planetary companion has mass MP=0.8670.061+0.065M_P = 0.867_{-0.061}^{+0.065} MJM_{J}, radius RP=1.860.16+0.18R_P = 1.86_{-0.16}^{+0.18} RJR_{J}, surface gravity loggP=2.7930.075+0.072\log{g_{P}} = 2.793_{-0.075}^{+0.072}, and density ρP=0.1670.038+0.047\rho_P = 0.167_{-0.038}^{+0.047} g cm3^{-3}. The planet is on a roughly circular orbit with semimajor axis a=0.045710.00084+0.00096a = 0.04571_{-0.00084}^{+0.00096} AU and eccentricity e=0.0350.025+0.050e = 0.035_{-0.025}^{+0.050}. The best-fit linear ephemeris is T0=2456883.4803±0.0007T_0 = 2456883.4803 \pm 0.0007 BJDTDB_{\rm TDB} and P=3.24406±0.00016P = 3.24406 \pm 0.00016 days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly-irradiated gas giants. The low stellar logg\log{g} and large implied radius are supported by stellar density constraints from follow-up light curves, plus an evolutionary and space motion analysis. We also develop a new technique to extract high precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of Teq=167555+61T_{eq}=1675^{+61}_{-55} K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom

    KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Full text link
    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V=8.0V=8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with Teff=5370±51T_{\rm eff} = 5370\pm51 K, M=1.4380.052+0.061MM_{*} = 1.438_{-0.052}^{+0.061} M_{\odot}, R=2.720.17+0.21RR_{*} = 2.72_{-0.17}^{+0.21} R_{\odot}, log g=3.7270.046+0.040g_*= 3.727_{-0.046}^{+0.040}, and [Fe/H]=0.180±0.075 = 0.180\pm0.075. The planet is a low-mass gas giant in a P=4.736529±0.00006P = 4.736529\pm0.00006 day orbit, with MP=0.195±0.018MJM_{P} = 0.195\pm0.018 M_J, RP=1.370.12+0.15RJR_{P}= 1.37_{-0.12}^{+0.15} R_J, ρP=0.0930.024+0.028\rho_{P} = 0.093_{-0.024}^{+0.028} g cm3^{-3}, surface gravity log gP=2.4070.086+0.080{g_{P}} = 2.407_{-0.086}^{+0.080}, and equilibrium temperature Teq=171246+51T_{eq} = 1712_{-46}^{+51} K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal
    corecore