1,280 research outputs found

    Stretch Increases Alveolar Epithelial Permeability to Uncharged Micromolecules

    Get PDF
    We measured stretch-induced changes in transepithelial permeability in vitro to uncharged tracers 1.5–5.5 Å in radius to identify a critical stretch threshold associated with failure of the alveolar epithelial transport barrier. Cultured alveolar epithelial cells were subjected to a uniform cyclic (0.25 Hz) biaxial 12, 25, or 37% change in surface area (ΔSA) for 1 h. Additional cells served as unstretched controls. Only 37% ΔSA (100% total lung capacity) produced a significant increase in transepithelial tracer permeability, with the largest increases for bigger tracers. Using the permeability data, we modeled the epithelial permeability in each group as a population of small pores punctuated by occasional large pores. After 37% ΔSA, increases in paracellular transport were correlated with increases in the radii of both pore populations. Inhibition of protein kinase C and tyrosine kinase activity during stretch did not affect the permeability of stretched cells. In contrast, chelating intracellular calcium and/or stabilizing F-actin during 37% ΔSA stretch reduced but did not eliminate the stretch-induced increase in paracellular permeability. These results provide the first in vitro evidence that large magnitudes of stretch increase paracellular transport of micromolecules across the alveolar epithelium, partially mediated by intracellular signaling pathways. Our monolayer data are supported by whole lung permeability results, which also show an increase in alveolar permeability at high inflation volumes (20 ml/kg) at the same rate for both healthy and septic lungs

    Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.

    Get PDF
    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or tipping point at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations

    Youth Football Injuries: A Prospective Cohort

    Get PDF
    Background: There are approximately 2.8 million youth football players between the ages of 7 and 14 years in the United States. Rates of injury in this population are poorly described. Recent studies have reported injury rates between 2.3% and 30.4% per season and between 8.5 and 43 per 1000 exposures. Hypothesis: Youth flag football has a lower injury rate than youth tackle football. The concussion rates in flag football are lower than in tackle football. Study Design: Cohort study; Level of evidence, 3. Methods: Three large youth (grades 2-7) football leagues with a total of 3794 players were enrolled. Research personnel partnered with the leagues to provide electronic attendance and injury reporting systems. Researchers had access to deidentified player data and injury information. Injury rates for both the tackle and flag leagues were calculated and compared using Poisson regression with a log link. The probability an injury was severe and an injury resulted in a concussion were modeled using logistic regression. For these 2 responses, best subset model selection was performed, and the model with the minimum Akaike information criterion value was chosen as best. Kaplan-Meier curves were examined to compare time loss due to injury for various subgroups of the population. Finally, time loss was modeled using Cox proportional hazards regression models. Results: A total of 46,416 exposures and 128 injuries were reported. The mean age at injury was 10.64 years. The hazard ratio for tackle football (compared with flag football) was 0.45 (95% CI, 0.25-0.80; P = .0065). The rate of severe injuries per exposure for tackle football was 1.1 (95% CI, 0.33-3.4; P = .93) times that of the flag league. The rate for concussions in tackle football per exposure was 0.51 (95% CI, 0.16-1.7; P = .27) times that of the flag league. Conclusions: Injury is more likely to occur in youth flag football than in youth tackle football. Severe injuries and concussions were not significantly different between leagues. Concussion was more likely to occur during games than during practice. Players in the sixth or seventh grade were more likely to suffer a concussion than were younger players

    Development and Function of CD94-Deficient Natural Killer Cells

    Get PDF
    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions

    Unions, Dynamism and economic performance

    Get PDF
    This paper explores the relationship between economic performance and US unionism, focusing first on what we do and do not know based on empirical research handicapped by limited data on establishment and firm level collective bargaining coverage. Evidence on the relationship of unions with wages, productivity, profitability, investment, debt, employment growth, and business failures are all relevant in assessing the future of unions and public policy with respect to unions. A reasonably coherent story emerges from the empirical literature, albeit one that rests heavily on evidence that is dated and (arguably) unable to identify truly causal effects. The paper's principal thesis is that union decline has been tied fundamentally to competitive forces and economic dynamism. Implications of these findings for labor law policy and the future of worker voice institutions is discussed briefly in a final section

    The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    Get PDF
    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses

    What Do Unions Do for Economic Performance?

    Full text link
    Twenty years have passed since Freeman and Medoff's What Do Unions Do? This essay assesses their analysis of how unions in the U.S. private sector affect economic performance - productivity, profitability, investment, and growth. Freeman and Medoff are clearly correct that union productivity effects vary substantially across workplaces. Their conclusion that union effects are on average positive and substantial cannot be sustained, subsequent evidence suggesting an average union productivity effect near zero. Their speculation that productivity effects are larger in more competitive environments appears to hold up, although more evidence is needed. Subsequent literature continues to find unions associated with lower profitability, as noted by Freeman and Medoff. Unions are found to tax returns stemming from market power, but industry concentration is not the source of such returns. Rather, unions capture firm quasi-rents arising from long-lived tangible and intangible capital and from firm-specific advantages. Lower profits and the union tax on asset returns leads to reduced investment and, subsequently, lower employment and productivity growth. There is little evidence that unionization leads to higher rates of business failure. Given the decline in U.S. private sector unionism, I explore avenues through which individual and collective voice might be enhanced, focusing on labor law and workplace governance defaults. Substantial enhancement of voice requires change in the nonunion sector and employer as well as worker initiatives. It is unclear whether labor unions would be revitalized or further marginalized by such an evolution

    Measurement of the W-pair cross section in e+ee^+ e^- collisions at 172 GeV

    Get PDF
    The e+e- --> W+W- cross section is measured in a data sample collected by ALEPH at a mean centre--of--mass energy of 172.09 GEV, corresponding to an integrated luminosity of 10.65 pb-1. Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7 +- 1.2 (stat.) +- 0.3 (syst.) pb. The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W --> hadrons) = 67.7 +- 3.1 (stat.) +- 0.7 (syst.)%, allowing a determination of the CKM matrix element |Vcs|= 0.98 +- 0.14 (stat.) +- 0.03 (syst.)
    corecore