2,117 research outputs found

    The effects of peripheral and central high insulin on brain insulin signaling and amyloid-β in young and old APP/PS1 mice

    Get PDF
    Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APP(swe)/PS1(dE9) transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aβ, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aβ. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment

    High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Get PDF
    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi0.5Sb1.5Te3 or n-type Bi2Te2.7Se0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively

    Formation of magnetite and iron-rich carbonates by thermophilic iron-reducing bacteria

    Get PDF
    Laboratory experiments were performed to study the formation of iron minerals by a thermophilic (45 - 75 degree(s)C) fermentative iron-reducing bacterial culture (TOR39) obtained from the deep subsurface. Using amorphous Fe(III) oxyhydroxide as an electron acceptor and glucose as an electron donor, TOR39 produced magnetite and iron-rich carbonates at conditions consistent, on a thermodynamic basis, with Eh (-200 mV to -415 mV) and pH (6.2 to 7.7) values determined for these experiments. Analyses of the precipitating solid phases by X-ray diffraction showed that the starting amorphous Fe(III) oxyhydroxide was nearly completely converted to magnetite and Fe-rich carbonate after 20 days of incubation. Increasing bicarbonate concentration in the chemical milieu resulted in increased proportions of siderite relative to magnetite and the addition of MgCl2 caused the formation of magnesium-rich carbonate in addition to siderite. The results suggest that the TOR39 bacterial culture may have the capacity to form magnetite and iron-rich carbonates in a variety of geochemical conditions. These results may have significant implications for studying the past biogenic activities in the Martian meteorite ALH84001

    Application of immunocytochemistry and BRAF mutational analysis to direct smears of metastatic melanoma

    Full text link
    BACKGROUND: The cytodiagnosis of melanoma in fine‐needle aspiration (FNA) specimens can be challenging, often requiring the use of immunocytochemistry. As constitutively activating mutations in the BRAF oncogene are present in at least 40% of melanomas, the use of FNA material to interrogate the BRAF mutational status is likely to increase. Because cell blocks, traditionally used for these studies, can occasionally exhibit insufficient tumor cellularity, the authors investigated the utility of direct smears for immunocytochemistry and BRAF mutational analysis. METHODS: Immunocytochemistry for S‐100, HMB‐45, and Mart‐1 was prospectively performed on direct smears in 17 FNAs of metastatic melanoma. Next, BRAF sequencing was performed using DNA isolated from archived Diff‐Quik–stained direct smears for 15 cases. In parallel, sequencing was performed using DNA obtained from corresponding cell blocks. RESULTS: S‐100 positivity in the tumor cells was observed in all 17 cases. HMB‐45 and Mart‐1 positivity was noted in 81% and 88% of cases, respectively. All 3 markers were positive in 76% of cases. Next, of the 15 archived melanoma FNAs tested, BRAF mutations were observed in 8 (53%); 5 and 3 melanomas harbored the V600E and V600K mutation, respectively. Corresponding cell blocks were also tested for all 15 cases, yielding concordant BRAF results in 14 (93%); 1 cell block yielded a false‐negative result. CONCLUSIONS: Cytologic direct smears represent a robust and valuable source of cellular material for immunocytochemistry and molecular studies, especially in instances in which inadequate cell block cellularity is anticipated or encountered. Cancer (Cancer Cytopathol) 2012. © 2011 American Cancer Society. This study demonstrates that direct smears represent a robust and valuable source of cellular material for ancillary studies used in the cytologic diagnosis of melanoma. Direct smears can be effectively used for confirmatory immunocytochemical studies and molecular assays designed to interrogate the BRAF mutational status of melanoma, especially in scenarios in which inadequate cell block cellularity is anticipated or encountered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90193/1/20180_ftp.pd

    Protein Dynamical Transition in Terahertz Dielectric Response

    Full text link
    The 200 K protein dynamical transition is observed for the first time in the teraherz dielectric response. The complex dielectric permittivity ϵ\epsilon = ϵ\epsilon' + iϵ\epsilon" is determined in the 0.2 - 2.0 THz and 80-294 K ranges. ϵ\epsilon" has a linear temperature dependence up to 200 K then sharply increases. The low temperature linear dependence in ϵ\epsilon" indicates anharmonicity for temperatures 80 K < T < 180 K, challenging the assumed harmonicity below 200K. The temperature dependence is consistent with beta relaxation response and shows the protein motions involved in the dynamical transition extend to subpicosecond time scales

    AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy

    Get PDF
    Tauopathies are characterized by the progressive accumulation of hyperphosphorylated, aggregated forms of tau. Our laboratory has previously demonstrated that passive immunization with an anti-tau antibody, HJ8.5, decreased accumulation of pathological tau in a human P301S tau-expressing transgenic (P301S-tg) mouse model of frontotemporal dementia/tauopathy. To investigate whether the

    Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation

    Get PDF
    Hypocretin (orexin; Hcrt)-containing neurons of the hypothalamus are essential for the normal regulation of sleep and wake behaviors and have been implicated in feeding, anxiety, depression, and reward. The absence of these neurons causes narcolepsy in humans and model organisms. However, little is known about the molecular phenotype of these cells; previous attempts at comprehensive profiling had only limited sensitivity or were inaccurate. We generated a Hcrt translating ribosome affinity purification (bacTRAP) line for comprehensive translational profiling of all ribosome-bound transcripts in these neurons in vivo. From this profile, we identified >6000 transcripts detectably expressed above background and 188 transcripts that are highly enriched in these neurons, including all known markers of the cells. Blinded analysis of in situ hybridization databases suggests that ∼60% of these are expressed in a Hcrt marker-like pattern. Fifteen of these were confirmed with double labeling and microscopy, including the transcription factor Lhx9. Ablation of this gene results in a >30% loss specifically of Hcrt neurons, without a general disruption of hypothalamic development. Polysomnography and activity monitoring revealed a profound hypersomnolence in these mice. These data provide an in-depth and accurate profile of Hcrt neuron gene expression and suggest that Lhx9 may be important for specification or survival of a subset of these cells

    Formation of magnetite and iron-rich carbonates by thermophilic iron-reducing bacteria

    Get PDF
    Laboratory experiments were performed to study the formation of iron minerals by a thermophilic (45 - 75 degree(s)C) fermentative iron-reducing bacterial culture (TOR39) obtained from the deep subsurface. Using amorphous Fe(III) oxyhydroxide as an electron acceptor and glucose as an electron donor, TOR39 produced magnetite and iron-rich carbonates at conditions consistent, on a thermodynamic basis, with Eh (-200 mV to -415 mV) and pH (6.2 to 7.7) values determined for these experiments. Analyses of the precipitating solid phases by X-ray diffraction showed that the starting amorphous Fe(III) oxyhydroxide was nearly completely converted to magnetite and Fe-rich carbonate after 20 days of incubation. Increasing bicarbonate concentration in the chemical milieu resulted in increased proportions of siderite relative to magnetite and the addition of MgCl2 caused the formation of magnesium-rich carbonate in addition to siderite. The results suggest that the TOR39 bacterial culture may have the capacity to form magnetite and iron-rich carbonates in a variety of geochemical conditions. These results may have significant implications for studying the past biogenic activities in the Martian meteorite ALH84001

    A Resonance Raman spectroscopic study on charge transfer enhancement in photosensitizers

    Get PDF
    The charge transfer (CT) properties of photosensitizers largely determine the photovoltaic performances of dye sensitized solar cells (DSSCs). Thus, understanding the CT properties of photosensitizers is key to further improving the performances of DSSCs. We herein investigated the underlying relationship be-tween the molecular structures and CT properties of the photosensitizers using resonance Raman (RR) spectroscopy and density functional theory (DFT) calculations. RR spectroscopy combined with DFT calculations showed that the presence of a triple bond (T-D1, T-D2, and T-D3) enhanced the degree of CT from the donor to the acceptor. In addition, the presence of electron donating groups (EDGs) on the donor (T-D2 and T-D3) further increased the CT properties of the donor. Moreover, DFT analysis based on the harmonic oscillator model of aromaticity revealed that the presence of a triple bond and an EDG increased the quinoidal character of the photosensitizer in the excited state. Finally, it was found that the degree of CT properties exhibited by each photosensitizer was in good agreement with the order of the DSSC performances. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration

    Get PDF
    Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration
    corecore