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RESOURCE/METHODOLOGY

Translational profiling of hypocretin
neurons identifies candidate molecules
for sleep regulation

Jasbir Dalal,1,2,11 Jee Hoon Roh,3,11 Susan E. Maloney,1,2 Afua Akuffo,1,2 Samir Shah,1,2 Han Yuan,1,2

Brie Wamsley,4 Wendell B. Jones,5,6,7,8 Cristina de Guzman Strong,5,6,7 Paul A. Gray,9

David M. Holtzman,3 Nathaniel Heintz,10 and Joseph D. Dougherty1,2,12

1Department of Genetics, 2Department of Psychiatry, 3Department of Neurology, Washington University School of Medicine,
St. Louis, Missouri, 63110, USA; 4Department of Neuroscience, Columbia University, New York, New York, 10032, USA; 5Division
of Dermatology, 6Center for Pharmacogenomics, 7Department of Internal Medicine, 8The Genome Institute, 9Department
of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA; 10Laboratory of
Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York,
10065, USA

Hypocretin (orexin; Hcrt)-containing neurons of the hypothalamus are essential for the normal regulation of sleep
and wake behaviors and have been implicated in feeding, anxiety, depression, and reward. The absence of these
neurons causes narcolepsy in humans and model organisms. However, little is known about the molecular
phenotype of these cells; previous attempts at comprehensive profiling had only limited sensitivity or were
inaccurate. We generated a Hcrt translating ribosome affinity purification (bacTRAP) line for comprehensive
translational profiling of all ribosome-bound transcripts in these neurons in vivo. From this profile, we identified
>6000 transcripts detectably expressed above background and 188 transcripts that are highly enriched in these
neurons, including all known markers of the cells. Blinded analysis of in situ hybridization databases suggests that
~60% of these are expressed in a Hcrt marker-like pattern. Fifteen of these were confirmed with double labeling
and microscopy, including the transcription factor Lhx9. Ablation of this gene results in a >30% loss specifically of
Hcrt neurons, without a general disruption of hypothalamic development. Polysomnography and activity
monitoring revealed a profound hypersomnolence in these mice. These data provide an in-depth and accurate
profile of Hcrt neuron gene expression and suggest that Lhx9 may be important for specification or survival of
a subset of these cells.

[Keywords: translational profiling; hypocretin; orexin; bacTRAP; Lhx9; narcolepsy]

Supplemental material is available for this article.
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Narcolepsy is a profound disorder of sleep regulation,
characterized by excessive daytime sleepiness, sleep at-
tacks, cataplexy, and sleep-onset REM (rapid eye move-
ment) periods. Studies indicate that narcolepsy, espe-
cially when accompanied by cataplexy, is due to the
absence of hypocretinergic neurons and signaling (Nishino
et al. 2000; Thannickal et al. 2000; Bourgin et al. 2008).
The hypocretins (Hcrts; also called orexins) are peptidergic
neurotransmitters used by a discrete population of neurons

in the lateral hypothalamus (de Lecea et al. 1998; Sakurai
et al. 1998). In model organisms, disruption of the gene
encoding the Hcrt peptides or a Hcrt receptor (Chemelli
et al. 1999; Lin et al. 1999) or, alternatively, the ablation of
the neurons producing Hcrt (Gerashchenko et al. 2001;
Hara et al. 2001; Zhang et al. 2007) recapitulates features of
narcolepsy. In humans, there are two variations of the
disorder: narcolepsy with cataplexy (NC) and narcolepsy
without cataplexy (NwoC). NC is strongly linked and
associated with the HLA DQB1*0602 allele, a T-cell
receptor locus, and P2RY11, a receptor that can regulate
immune cell survival (Hallmayer et al. 2009; Kornum et al.
2011). This strongly suggests involvement of the immune
system in the etiology of NC, while the involvement in
NwoC is less clear.

11These authors contributed equally to this work.
12Corresponding author
E-mail jdougherty@genetics.wustl.edu
Article published online ahead of print. Article and publication date are
online at http://www.genesdev.org/cgi/doi/10.1101/gad.207654.112.

GENES & DEVELOPMENT 27:565–578 � 2013 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/13; www.genesdev.org 565



There is an interest in identifying a comprehensive
profile of proteins specifically found in Hcrt neurons for
three reasons. First, there is a long-standing hypothesis
that epitopes found specifically in Hcrt neurons may
serve to direct the autoimmune-mediated destruction of
these cells (Lim and Scammell 2010). Previous work
suggests that Trib2 may be one such epitope (Cvetkovic-
Lopes et al. 2010; Kawashima et al. 2010; Toyoda et al.
2010), although this did not replicate in more recent
patients with narcolepsy following H1N1 (Dauvilliers
et al. 2010). Second, there is an interest in understanding
the suit of receptors and channels specifically expressed
by these neurons, as these may serve as drug targets for
modulating sleep even in healthy individuals. Third, there
is an interest in understanding the transcription factors
that may serve to specify these neurons as both candidates
for rare variant analyses in humans with early onset
narcolepsy or NwoC and tools to direct the differentiation
of Hcrt neurons from patient cells. In the present study, we
used translating ribosome affinity purification (TRAP)
(Doyle et al. 2008; Heiman et al. 2008; Dougherty et al.
2010) to generate a comprehensive translational profile of
Hcrt neurons. We then confirmed these results with
independent methods and pursued functional studies of
one transcription factor, Lhx9, that may be important for
the normal development of a subset of Hcrt neurons and
normal sleep behavior.

Results

Translational profiling of Hcrt neurons

To apply the TRAP methodology to Hcrt neurons, we
generated mouse lines targeting Hcrt-producing cells

(HcrtTeGFP-RpL10a) (Fig. 1A). Successful targeting was
confirmed using confocal immunofluorescent micros-
copy for eGFP and Hcrt antibodies (Fig. 1B) as well as in
situ hybridization (ISH) for Hcrt transcript and GFP
(data not shown). Both methods revealed GFP expression
in >85% of neurons with detectable Hcrt expression and
no instances of eGFP-RpL10a expression in Hcrt-negative
cells. There was no eGFP-RPL10a expression elsewhere
in the adult brain.

We then conducted replicate TRAP assays on four in-
dependent pools of adult mice. Biological replicates
showed good reproducibility, with the minimum Pearson’s
correlation >0.96 across all comparisons (Fig. 2A). Com-
pared with total RNA from the diencephalon, mRNA
purified from Hcrt neurons showed a substantial enrich-
ment of many transcripts, including known markers of
these cells (Fig. 2B).

Identification of transcripts enriched in the Hcrt
neuron translational profile

To systematically identify a set of RNAs specifically
enriched in Hcrt neurons compared with cell types across
the nervous system, we combined the results of three
statistical filters: We removed probe sets with low ex-
pression, selected for those with more than twofold
enrichment in Hcrt neurons compared with total dience-
phalic RNA, and selected those significantly specific to
Hcrt neurons (pSI < 0.01) when compared with a pre-
viously collected set of 26 neural samples (Doyle et al.
2008) as described (Dougherty et al. 2010). This identified
220 probe sets, representing products from 188 genes
(Table 1; Supplemental Table S1), and included a signifi-
cant overlap with the few known Hcrt cell markers Hcrt,

Figure 1. Characterization of a Hcrt bacTRAP line. (A) Immunohistochemistry for Hcrt1 (orexin A) in a wild-type (WT) mouse brain
(left panel) shows the same pattern of expression as eGFP antibodies on HcrtTeGFP-RpL10a mice (middle panel). (Right panel) Both
label scattered cells with neuronal morphology in the lateral hypothalamus. (B) Confocal immunofluorescence on the HcrtTeGFP-
RpL10a mouse line reveals >85% of Hcrt-positive neurons (red; middle panel) are eGFP-RpL10a-positive (green; left panel). No Hcrt-
negative, eGFP-RpL10a-positive cells were seen anywhere in brain. Bar, 50 mm.
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Nptx2, Pdyn, and Igfpb3 (P < 10 3 10�100, x2 test) (Reti
et al. 2002; Crocker et al. 2005; Honda et al. 2009).

Comparison with previous studies and validation
of microarray results

Previously, others have used different techniques to pro-
file Hcrt neurons: using affinity purification of RNAs
bound to a tagged polyA-binding protein (Pabp) expressed
in Hcrt neurons (Cvetkovic-Lopes et al. 2010) or screen-
ing for transcripts lost from hypothalamic RNA when
Hcrt neurons were ablated (Honda et al. 2009). Careful
comparison with these studies using statistical criteria
matched to each publication indicates that our data are
more accurate than Pabp (Fig. 2C–E) and are consistent
with Honda et al. (2009) but with an order of magnitude
more sensitivity.

As Hcrt neurons are relatively rare and thus contribute
little RNA to a total RNA sample analyzed from whole
hypothalamus, the strategy taken by Honda et al. (2009)
would only be predicted to detect only very abundant and
specific transcripts from these cells as well as changes in
other cells responding to the loss of the Hcrt neurons.

They discovered 53 probe sets depleted more than three-
fold, which overlapped with the known markers of these
cells (P < 10 3 10�100, x2 test). Thus, the approach was
accurate although likely not comprehensive. Matching
statistical criteria to the previous studies, TRAP would
detect 534 probe sets more than threefold enriched.
TRAP probe sets significantly overlap with that of Honda
et al. (2009) (P < 7 3 10�7, x2 test) and the known markers
of these cells (P < 10 3 10�100, x2 test). In contrast, the
Pabp microarrays detected 1709 probe sets as enriched in
Hcrt neurons more than threefold, although there was no
significant overlap with either our analysis, that of Honda
et al. (2009), or the known markers of these cells (all P >
0.1, x2 test) (see also Fig. 2C).

For a systematic and independent confirmation of our
data, we also examined the Allen Brain Atlas database of
mouse ISH patterns (Lein et al. 2007) for our 188 most
enriched transcripts (Table 1; Supplemental Table S1).
Blinded scorers simultaneously examined the top 188
transcripts from Pabp and 188 transcripts randomly
selected from the microarray. Due to the scattered nature
of Hcrt neuron expression (Fig. 1B), it is impossible to

Figure 2. TRAP purification of Hcrt cell mRNA. (A) Scatter plot of mRNA levels from microarray data from replicate Hcrt neuron
TRAP assays. Log10 expression values. (B) Scatter plot of mRNA levels from microarray data from Hcrt neuron TRAP assays (X-axis,
average of four arrays), compared with whole hypothalamic RNA, shows robust enrichment (>16-fold) of known Hcrt neuron-expressed
genes (blue) and depletion (<0.5-fold) of negative controls (red, markers of glia). Multiple probe sets per gene are labeled when available.
(C) Scatter plot of Pabp arrays (downloaded from Gene Expression Omnibus [GEO]: GSE17617; average of n = 9 arrays per group) shows
a larger number of probe sets enriched more than twofold, including some glial genes. Most of the marker probe sets showed no signal.
(D) Scoring rubric for Allen Brain Atlas analysis. (E) Blinded scoring of ISH patterns reveals a significant enrichment within the TRAP
gene list for transcripts with Hcrt marker-like expression (scores of 1–3, P < 3 3 10�10, x2 test). Each list normalized to the total number
of scorable transcripts on the list (n = 32–67).

Translational profiling of hypocretin neurons

GENES & DEVELOPMENT 567



unambiguously identify Hcrt neurons from single-label
ISH. However, all Hcrt neuron-enriched genes should
show a pattern of enrichment in scattered cells of the
lateral hypothalamus. Therefore, we scored for this
‘‘Hcrt-like pattern,’’ (HLP) using as guides the Allen ISH
patterns of Hcrt, Pdyn, Nptx2, and Igfbp3—markers that
are known to have varying degrees of specificity for these
cells (Fig. 2D).

Of the 188 TRAP transcripts, 65 had coronal ISH
patterns with some detectable signal. Of these, 37 (59%)
had an expression pattern clearly consistent with a robust
enrichment in Hcrt neurons, analogous to positive con-
trols Pdyn and Nptx2. Compared with the frequency of
HLPs from the 188 randomly selected transcripts, the
odds of this enrichment occurring by chance are slim
(P < 3 3 10�10, x2 test). Seven seemed to nearly match
the exact pattern of Hcrt expression (Fam46a, Creb3I1,
Gng2, Lhx9, Tmed3, Rfx4, and Pcbd1) in the hypothala-
mus (Supplemental Fig. S1). Of the 65 scored, only two
(Agrp and Bend5) had patterns of expression that would
seem to exclude them from Hcrt neurons entirely. The
remaining genes were more broadly expressed in hypo-
thalamic cells. These would not necessarily be consid-
ered to contradict the microarray results: A difference of
twofold may not be readily discernible by ISH. Also ISH
and TRAP may differ because of differences between
transcription and translation, and occasionally ISH from
the Allen Brain Atlas are simply inaccurate. For example,
Lhx9 shows strong ubiquitous brain expression in the
Allen Brain Atlas at most ages, in contrast to other re-
ports (Bertuzzi et al. 1999; Retaux et al. 1999; Nakagawa
and O’Leary 2001; Gray et al. 2004). Nonetheless, even
using only the 188 transcripts derived from our most

Table 1. Transcripts enriched in Hcrt neurons

Probe set Expression Hcrt/total pSI Symbol

1433600_at 1157.88 3.99 0.000404 Adra2a
1421690_s_at 148.86 2.66 3.96 3 10�6 Agrp
1417950_a_at 250.51 5.58 0.000137 Apoa2
1418603_at 938.19 80.05 1.98 3 10�6 Avpr1a
1429790_at 2916.08 3.96 0.000137 Celf6
1425176_at 1171.14 58.31 1.98 3 10�6 C1ql3
1440397_at 1378.00 5.51 1.98 3 10�5 Cacna2d1
1418778_at 940.08 8.98 7.52 3 10�5 Ccdc109b
1421195_at 3691.70 20.04 1.98 3 10�6 Cckar
1439221_s_at 260.49 58.94 1.98 3 10�6 Cd40
1433969_at 1756.72 7.52 0.000628 Cdkl4
1424528_at 1868.47 5.34 0.000732 Cgrefl
1417956_at 768.02 8.32 3.17 3 10�5 Cidea
1419295_at 260.28 34.90 9.90 3 10�6 Creb3l1
1422012_at 444.76 28.54 1.98 3 10�6 Crhr2
1448471_a_at 1089.47 13.16 1.98 3 10�6 Ctla2a
1449939_s_at 3798.52 33.48 1.98 3 10�6 Dlk1
1433494_at 6653.81 2.52 0.000522 Dos
1453223_s_at 138.71 31.39 0.000158 Dppa2
1416942_at 73.50 15.66 0.000273 Erap1
1455872_at 805.50 10.34 1.98 3 10�6 Fam167a
1437868_at 707.90 3.12 0.000424 Fam46a
1417487_at 203.13 45.97 1.98 3 10�6 Fosl1
1455843_at 171.83 9.00 1.98 3 10�6 Fut4
1422915_at 150.26 34.01 1.98 3 10�6 Gast
1420499_at 613.75 27.11 1.98 3 10�6 Gch1
1425303_at 287.74 28.56 1.98 3 10�6 Gck
1427789_s_at 64.84 14.64 0.000237 Gnas
1460031_at 412.79 4.91 1.58 3 10�5 Gpr45
1449106_at 13440.24 15.57 1.98 3 10�6 Gpx3
1416997_a_at 1745.66 4.99 1.98 3 10�6 Hap1
1420471_at 44144.81 36.34 1.98 3 10�6 Hcrt
1425804_at 246.09 53.46 1.98 3 10�6 Hmx2
1449872_at 496.60 89.67 9.90 3 10�6 Hspb3
1458268_s_at 211.93 17.00 1.98 3 10�5 Igfbp3
1427164_at 253.89 17.33 0.000263 ll13ra1
1426808_at 314.88 7.30 0.000142 Lgals3
1429905_at 938.98 3.48 1.98 3 10�6 Lhx9
1450009_at 123.27 26.98 0.000701 Ltf
1457843_at 391.49 20.22 0.000137 Lypd6
1438568_at 292.05 2.96 0.000117 Mrgpre
1417997_at 589.35 12.34 1.98 3 10�6 Ngb
1423506_a_at 12525.32 12.50 1.98 3 10�6 Nnat
1449960_at 1143.52 221.50 1.98 3 10�6 Nptx2
1420799_at 991.66 6.04 9.90 3 10�6 Ntsr1
1416410_at 5710.99 5.35 0.000695 Pafah1b3
1421396_at 2959.43 50.06 1.98 3 10�6 Pcskl
1450414_at 214.00 5.67 0.000756 Pdgfb
1416266_at 2133.68 26.77 1.98 3 10�6 Pdyn
1453839_a_at 407.36 53.07 1.98 3 10�6 pi16
1426208_x_at 21654.95 5.87 0.000532 Plagl1
1440505_at 630.31 4.27 1.58 3 10�5 Plcxd1
1416957_at 98.92 22.39 2.77 3 10�5 Pou2af1
1430636_at 333.78 1210 1.98 3 10�6 Ppp4r1l
1453578_at 512.30 16.42 0.000273 Pter
1450374_at 212.33 22.33 1.98 3 10�6 Pth2
1416588_at 4828.16 6.01 0.000791 Ptprn
1426622_a_at 1313.62 5.19 0.000744 Qpct
1417988_at 17632.89 2.48 0.00059 Resp18
1436931_at 6490.66 13.37 0.000865 Rfx4
1425124_at 245.07 55.46 1.98 3 10�6 Rnf183
1422562_at 1716.15 19.61 1.98 3 10�6 Rrad

Probe set Expression Hcrt/total pSI Symbol

1417643_at 744.96 2.87 0.000144 Rsph1
1449319_at 987.10 20.24 1.98 3 10�6 Rspol
1419025_at 333.51 14.41 1.98 3 10�6 Sag
1450708_at 45825.70 5.36 1.98 3 10�6 Scg2
1457819_at 163.01 8.56 1.98 3 10�6 Scn9a
1418957_at 432.95 16.90 0.000137 Stac
1422102_a_at 150.19 32.35 1.98 3 10�6 Stat5b
1434442_at 213.63 1697 0.00022 Stbd1
1422531_at 1262.06 4.49 0.000495 Syt5
1431835_at 232.02 7.29 0.000218 Tcerg 1l
1422571_at 162.43 36.76 3.17 3 10�5 Thbs2
1449571_at 4896.57 13.59 1.98 3 10�6 Trhr
1416935_at 972.80 5.22 1.98 3 10�6 Trpv2
1436094_at 8737.01 2.07 0.000317 Vgf
1436361_at 2123.31 244.81 1.98 3 10�6 Vgll2
1428434_at 10601.80 2.41 0.000773 Zcchc12
1429787_x_at 3689.81 7.07 0.000764 Zwint

(Probe set) The Affymetrix probe set identification; (expression)
the microarray expression level in arbitrary units; (Hcrt/total)
the fold change compared with whole diencephalon RNA;
(pSI) the significance of enrichment compared with all published
cell types; (symbol) official gene symbol (Doyle et al. 2008;
Dougherty et al. 2010). This table includes only named genes.
For a complete list, see Supplemental Table S1.
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stringent criteria, TRAP increased by an order of magni-
tude the number of known Hcrt neuron-enriched genes.
The Honda et al. (2009) data did not have a comparable
number of transcripts to score, but of their scorable ISH
patterns, they showed nearly the same pattern of enrich-
ment as the TRAP data (57% with scores of 1–3). In
contrast, the transcripts from the Pabp pulldown were
no more likely than chance to be expressed in a HLP
(P > 0.15, x2 test) (Fig. 2E).

We further confirmed colocalization with Hcrt peptide
for 15 of our 188 genes by confocal immunofluorescence
and ISH (Fig. 3; Table 2). This suggests that the microarray
results are predicting expression correctly in a substantial
portion of the cases. Celf6 and Nnat labeled nearly all
Hcrt neurons, but the Hcrt neurons were clearly only
a subset of the hypothalamic cells expressing these pro-
teins. This is similar to what has been seen with tradi-
tional markers of these cells, Pdyn and Nptx2. From these
results, however, we also identified a previously unre-
ported molecular diversity within these neurons. For
example, both Pcsk1 and Ngb only labeled subsets of
the Hcrt neurons at the protein level, in addition to
labeling adjacent nuclei. Finally, probes of two genes,
Stat5b and especially Rfx4, had nearly perfect overlap
with Hcrt neurons, with the latter having expression only
within these neurons.

Finally, to determine whether the data continued to be
informative even beyond the top 188 genes, we also
stained with two robust antibodies: Calb1 and Calb2.
These were also predicted to have expression in Hcrt
neurons, although only very modest enrichment (1.4-fold
and 1.2-fold). We detected robust labeling in most Hcrt
neurons, although again there was an interesting and
previously unreported molecular diversity (Fig. 3C).

Correlating the Hcrt neuron profile with function

An unbiased examination of our transcripts (Supplemen-
tal Table S1) using two gene categorization tools (DAVID
[Database for Annotation, Visualization, and Integrated
Discovery] and BiNGO [Biological Network for Gene
Ontology]) highlights several features that make these
cells distinct. There is a substantial enrichment for genes
containing signal peptides, such as peptide neurotrans-
mitters, suggesting that these cells have an usually robust
repertoire of secreted molecules (UniprotKB term ‘‘Sig-
nal,’’ P < 1.6 3 10�5, as calculated by DAVID with
Benjamini-Hochberg [B-H] correction). More surprisingly,
there seem to be intact pathways enriched in these
neurons related to cytokine signaling (for example, gene
ontology [GO] terms ‘‘regulation of immune effector
process,’’ and ‘‘regulation of cytokine production,’’ both
P < 5 3 10�5, BiNGO hypergeometic test with B-H
correction), driven by the genes H2-M3, Cd59A, Stat5b,
Tlr2, Cd40, Il13ra1, Panx1, and Apoa2, and an unusually
high level of Caspase1. It is possible that something about
these transcripts renders Hcrt neurons particularly vul-
nerable to destruction in NC. For example, the presence
of Caspase1, which perhaps normally serves some role in
protein secretion in these cells (Keller et al. 2008), could

render them vulnerable to pyroptosis (Miao et al. 2011)
after infection.

Our analysis also identifies a set of receptors that
makes clear predictions about what type of neurotrans-
mitters or pharmacological agents these cells should be
especially responsive to, including serotonin (Htr1a and
Htr1f) and other monoamines (Adra2a); neurotensin
(Ntsr1); arginine vassopressin (Avpr1a); growth hormone
(Ghr); thyrotropin-releasing hormone (Trhr); parathyroid
hormone (Pth2r); cholecystokinin (Cckar); and an orphan
receptor and potentially novel drug target, Gpr45. The
predictions about the monoamines, Avp, Ntsr, Trh, and
Cck are supported by the literature (Bayer et al. 2005;
Tsujino et al. 2005; Kumar et al. 2007; Hara et al. 2009),
while the others are novel. Finally, we identify a novel set
of transcription factors—including Elk3, Hmx2, Fosl1,
Creb3l1, Rfx4, Stat5b, and Lhx9—that may be important
for the specification of these cells.

Lhx9 is necessary for a subset of Hcrt neurons in vivo

To determine whether any of the Hcrt neuron transcripts
that we discovered here may have some functional
significance for these cells, we examined Lhx9 knockout
mice. Previously, two groups have generated deletions of
Lhx9 in mice. One group identified an essential role of
this transcription factor in formation of the gonads (Birk
et al. 2000), while the other focused on the role of Lhx9 in
conjunction with Lhx2 in commissural relay neuron
axonal guidance in the embryonic development of the
spinal cord (Wilson et al. 2008). To our knowledge, no one
has studied the functional consequences of Lhx9 deletion
on hypothalamic development.

To determine whether Lhx9 may contribute to de-
velopment or axonogenesis of Hcrt neurons, we quanti-
fied the distribution and density of Hcrt axons by immu-
nohistochemistry from serial sections of adult brains in
Lhx9 knockout mice (Wilson et al. 2008) and wild-type
littermate controls (n = 4). In the absence of Lhx9, Hcrt
fibers continued to project to all of their targets with
a normal pattern of innervation (Peyron et al. 1998) but
a somewhat decreased amount of fiber density. Through-
out the brain, we found that targets had lost 20%–40% of
Hcrt innervation (P < 0.05, t-tests, in three regions
counted: cortex, paraventricular thalamus, and septum).
This could be due to a failure of either axonogenesis
(Wilson et al. 2008) or specification of Hcrt neurons
themselves. Therefore, we counted all Hcrt neuron cell
bodies in the hypothalamus. There was a 39% (65%)
decrease of Hcrt cell number in the Lhx9 knockouts (P <
0.05 3 10�5, one-tailed t-test).

This loss of Hcrt neurons could be due to a broad failure
of brain development, as has been previously described
for Ebf2 knockouts (De La Herran-Arita et al. 2011).
However, careful characterization of our Lhx9 knockout
and wild-type mice demonstrated no consistent differ-
ences in brain size, weight, or structure. To determine
whether this loss of neurons is due to a general decrease
in the number of cells in the hypothalamus, we also
examined two other populations of neurons in the hypo-
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Figure 3. TRAP accurately predicts gene expression in Hcrt neurons. (A) Confocal immunofluorescence for positive control anti-
Nptx2 (green) and anti-Hcrt (red) antibodies shows Hcrt is expressed in a subset of Npt2x cells, consistent with their known expression
patterns. Colocalization of nine novel Hcrt neuron gene products identified as enriched in Hcrt neurons (Table 1) shows substantial
overlap (Table 2). Lhx9 protein was expressed in a subset of Hcrt neurons, and a subset of Lhx9 cells were positive for Hcrt. (B) In situ
hybridization for potential novel markers of Hcrt neurons (scored as a 1 or 2 in Supplemental Table S1), identifies six genes highly
enriched in Hcrt neurons. (C) Genes identified as expressed but not substantially enriched by TRAP (Supplemental Table S2) also show
robust expression in Hcrt neurons. Note the molecular diversity of Hcrt neurons in their expression of calcium-binding proteins Calb1
and Calb2 (white arrows point to triple expression of Calb1, Calb2, and Hcrt; yellow arrows point to double expression of Calb1 or
Calb2 and Hcrt; cyan arrows point to single expression of Calb1). All of the images are captured at 403 magnification.



thalamus that were not predicted to be influenced by
Lhx9 expression: dopaminergic neurons, labeled by anti-
bodies to tyrosine hydroxylase (Th), and melanin-concen-
trating hormone (Mch) neurons, labeled with antibodies
to Mch. For this, we examined an independent set of wild-
type and Lhx9 knockout mice with two-color immuno-
fluorescence for Hcrt and Mch or Hcrt and Th and
counted all Hcrt-, Mch-, or Th-positive cells in any sections
of hypothalamus containing Hcrt neurons. We again
observed a 33% decrease of Hcrt cells in Lhx9 knockout
mice (P < 0.05, t-test, n = 3) with no decrease in Th- or
Mch-positive neurons on the same sections. Finally, to
determine whether this absence of Hcrt neurons may
be due to a failure of development or whether they are
lost in adulthood, we counted Hcrt neurons in 28-d-old
Lhx9 knockout and wild-type mice. This is the earliest
feasible time point for this experiment, as Hcrt peptide
does not reach adult levels until after the end of the
juvenile period (Yamamoto et al. 2000). The 33% de-
crease was also detectable by this time (data not shown),
consistent with an early loss or failure of specification
or maturation of the Hcrt expression rather than a de-
generation in adult mice. mRNA expression studies of
this transcript in wild-type mice at postnatal day 28
(P28) (Fig. 3) suggest that nearly all Hcrt neurons may
express some amount of Lhx9 transcript, although pro-
tein was only detectable in a subset of these cells and
was too dim to reliably quantify.

Loss of Lhx9 leads to a profound perturbation
of sleep behavior

The human disorder of narcolepsy is characterized by
a profound dysregulation of sleep. NC is accompanied
in >90% of patients by a complete loss of Hcrt peptide,
as assayed from the cerebral spinal fluid (CSF) of living
patients (Nishino et al. 2000) or immunohistochemistry
in deceased (Thannickal et al. 2000). However, NwoC is
more variable with regards to Hcrt. Post-mortem studies
have shown that NwoC is accompanied by only a partial
loss of Hcrt neurons (Thannickal et al. 2009). We sought
to determine whether Lhx9 knockout mice also have
abnormal sleep physiology.

Five Lhx9 knockout and five wild-type littermates
were implanted with electrodes to permit continuous
monitoring of the sleep–wake cycle. Lhx9 knockout mice
showed no evidence of cataplexy (Fig. 4A) but did dem-
onstrate a profound hypersomnolence, with a 20% de-
crease in time spent awake across a 24-h recording period
and a corresponding increase in NREM (non-REM) sleep
(Fig. 4B,C). REM sleep was not affected. Circadian rhythm
appears intact in these animals, with the normal increase
in wakefulness seen during the dark period (Fig. 4C).
Thus, these mice that have a loss of a subset of Hcrt neurons
also recapitulate a portion of the narcolepsy phenotype,
hypersomnolence, in the absence of REM abnormalities or
cataplexy. Submaximal doses of Hcrt receptor antago-
nists (Morairty et al. 2012) or partial ablations of the Hcrt
neuron population (Gerashchenko et al. 2001) can pro-
duce a hypersomnolence similar to what we observed
here. Thus, the most parsimonious explanation of our
data is that Lhx9 is important for a subset of Hcrt neurons
and that this subset is essential for normal sleep behavior.

However, this is but one of two alternative hypotheses
regarding the mechanism of Hcrt loss in Lhx9 knockout
mice. Either Lhx9 is essential in early fate specification
or survival of a subset of Hcrt neurons or Lhx9 simply
promotes expression of the Hcrt gene. We next con-
ducted a set of experiments to address these alternative
mechanisms.

Lhx9 does not regulate Hcrt promoter activity in vitro

To determine whether Lhx9 is a direct regulator of the
known Hcrt promoter (pHcrt), we cloned a fragment of
the Hcrt promoter, including the conserved regions pre-
viously reported to provide Hcrt neuron-specific activity
in vivo and in vitro (Moriguchi et al. 2002; Adamantidis
et al. 2007; Silva et al. 2009), and conducted luciferase
assays in a neuroblastoma cell line overexpressing Lhx9
(Supplemental Fig. S2A). Lhx9 did not induce activity
from this promoter and indeed led to a very modest
suppression of luciferase activity, providing strong evi-
dence that Lhx9 is not a direct positive regulator of this
genomic region. However, this experiment does not pre-
clude the possibility that Lhx9 positively regulates Hcrt
expression through a different genomic region, regulates
Hcrt expression indirectly through a second transcription
factor, or requires a cofactor not expressed in the neuroblas-
toma cell line. Finally, although it has been used experi-
mentally in this cell line before (Silva et al. 2009), pHcrt has
very little activity in vitro in any reported cell line, pre-
cluding analyses of the ability of Lhx9 to robustly suppress
Hcrt expression. To test these possibilities, we generated
a high-titer Lhx9 lentivirus and injected it stereotactically
into the lateral hypothalamus in a set of two experiments.

Lhx9 does not positively or negatively regulate Hcrt
expression in vivo

We first injected wild-type mice unilaterally in the
hypothalamus with either Lhx9-producing (n = 3) or
GFP-producing (n = 4) viruses and, 8 d later, processed
them for immunofluorescence for Lhx9, GFP, and Hcrt

Table 2. TRAP-identified genes are expressed in Hcrt
neurons

Gene N Percentage localization

Celf6 800 99 6 0.5
Gpx3 1045 29 6 9.3
Lgasl3 684 35 6 5.8
Ngb 374 54 6 3.6
Nnat 1000 88 6 2.3
Pcsk1 883 42 6 4.6
Stat5b 404 87 6 1.4
Dlk1 573 44 6 10
Lhx9 527 76 6 3.6

Quantification of confocal immunofluorescence of Hcrt peptide
expression with in situ hybridization (Lhx9) or candidate anti-
bodies (all others). The percentage of Hcrt neurons expressing
each candidate is presented here as mean 6 SEM across the
three animals. N is the total number across the three mice.
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peptide. Confocal fluorescence microscopy confirmed
expression of exogenous Lhx9 and GFP in the injected
sides and accurate targeting to the region of Hcrt neurons
in six of seven injected animals. Excluding the one off-
target GFP animal, we counted all Hcrt neurons in all
animals on both injected and uninjected sides. There
was no significant difference between injected and unin-
jected sides for either Lhx9 or GFP or between Lhx9- and
GFP-injected animals (Supplemental Fig. S2B). These
data demonstrate that Lhx9 is not a direct or indirect

transcriptional regulator of Hcrt expression in adult
animals in vivo, at least in wild-type animals. How-
ever, the possibility remained that Lhx9 could rescue
the Hcrt neuron number and/or behavioral disruptions
seen in adult Lhx9 knockout mice. Therefore, in our
second experiment, we first validated a more high-
throughput method for phenotyping the behavior of
our animals and then attempted to rescue the knockout
phenotype with bilateral Lhx9 injection into the lateral
hypothalamus.

Figure 4. Genetic ablation of Lhx9 results in hypersomnolence. (A) Representative hypnograms for a single Lhx9 knockout (KO) and
wild-type (WT) mouse over a 12-h active period show a lack of sleep-onset REM periods but an apparent increase in NREM sleep in the
knockout mouse. (B, top panel) Quantification of minutes per hour spent in REM and NREM sleep and wakefulness for Lhx9 knockout
and wild-type mice reveals a significant increase in NREM sleep at the expense of wakefulness (n = 5 per group, two-tailed t-test).
(Bottom panel) There was no difference in bout duration of wakefulness and NREM sleep between Lhx9 knockout and wild-type mice
(n = 5 per group, two-tailed t-test). (C) Both Lhx9 knockout and wild-type mice show normal circadian differences in activity between
night and day (n = 5 per group, two-tailed t-test) with no significant difference between genotypes. (*) P < 0.05; (**) P < 0.01. (***) P <

0.001. Values represent mean 6 SEM.

Dalal et al.

572 GENES & DEVELOPMENT



Replacement of Lhx9 in the lateral hypothalamus
does not rescue disruption of behavior or Hcrt
neuron number

Quantification of time at rest and horizontal ambula-
tions using 24-h activity monitoring has previously been
shown to provide reliable estimates of sleep and wake-
fulness (Pack et al. 2007). The rest and activity patterns
of Lhx9 knockout (n = 9) and wild-type (n = 6) mice were
evaluated over a 48-h period in automated chambers
using photobeam breaks. The hypersomnolence demon-
strated by the Lhx9 knockout mice during EEG record-
ing was replicated during activity monitoring. Lhx9
knockout mice exhibited a 20% increase in time at rest
(minutes per hour) compared with wild-type mice (P <
0.05, ANOVA) (Fig. 5A) as well as normal increases in
time at rest during the light period relative to the dark
period, indicating intact circadian rhythms (P < 0.05,
paired t-test) (Fig. 5B). Complementary to the sleep
behavior results, a 57% decrease in average activity per
hour was displayed by the Lhx9 knockout mice compared
with wild-type mice (P < 0.01, ANOVA) (Fig. 5C). The
decreases in activity were observed across both the light
and dark periods (P < 0.05, repeated measures ANOVA)
(Fig. 5D). These results support the EEG data and confirm
that Lhx9-null mice with a loss of Hcrt neurons demon-
strate a profound hypersomnolence.

Following the first 48-h activity monitoring session,
a lentiviral vector was bilaterally injected into the Hcrt
neurons of Lhx9 knockout mice to produce expression of
either Lhx9 (n = 5) or GFP (n = 4). Sixteen days following
injection, successful targeting was confirmed through
confocal microscopy of immunofluorescence-labeled sec-
tions, showing GFP and Lhx9 expression within the Hcrt
neuron-containing lateral hypothalamus (Fig. 5E) with
successful Lhx9 expression in the targeted areas in four of
five mice (Fig. 5F) and GFP in four of four mice. Imme-
diately prior to these neuroanatomical studies, the be-
havior of these mice was evaluated again over a 48-h period
to determine whether reinstatement of Lhx9 expression in
adult lateral hypothalamus could rescue the perturbations
observed in sleep and wakefulness behaviors. While the
Lhx9 expression was successfully rescued within the lateral
hypothalamus, the behavioral phenotype was not. During
post-injection activity monitoring, the Lhx9-injected
Lhx9 knockout mice did not demonstrate a change in
rest or ambulatory activity levels from those observed
during preinjection activity monitoring (P > .05, repeated
measures ANOVAs) (Fig. 5G,H). The Lhx9-injected Lhx9
knockout mice also demonstrated levels of rest and
activity comparable with that of the GFP-injected Lhx9
knockout controls during both pre- and post-injection
activity monitoring. In addition, staining and quantifica-
tion indicated that Lhx9-injected Lhx9 knockout animals
showed no rescue of Hcrt neuron number (P > 0.05, two-
tailed t-test) (Fig. 5I).

Overall, we could not rescue either Hcrt neuron num-
ber or Lhx9 knockout sleep behavior, which suggests that
these are related phenomena and that the perturbations
in sleep and wakefulness behavior are due to a loss of cells

during development rather than simple dysregulation of
Hcrt promoter activity. Our current data do not address
whether the cell loss is due to a cell-autonomous failure
of specification or a secondary consequence of either
pathfinding defects or loss of a distally acting signal.
These hypotheses will need to be tested in the future with
direct genetic approaches, including cell-specific deletion
of Lhx9.

Regardless of the outcome of those studies, we discov-
ered a genetic manipulation that results in a profound
perturbation of sleep behavior. It is also of interest that
a genome-wide association study of human narcoleptics
(Hallmayer et al. 2009) identified a SNP on chromosome 1
with a suggestive association to narcolepsy (P < 1.04 3

10�7) that is 96 kb upstream of Lhx9 (HG19 assembly, as
accessed December 2012, University of California at
Santa Cruz Genome Browser, http:/www.genome.ucsc.
edu). Thus, there remains the possibility that Lhx9 may
be an important regulator of sleep in humans as well.

Discussion

We described here a mouse line permitting the in vivo
profiling of Hcrt neurons and identified a set of 188
transcripts robustly enriched in these neurons (Supple-
mental Table S1) in addition to thousands more moder-
ately enriched or nominally expressed (Supplemental
Table S2), including many additional channels and re-
ceptors. Our validation studies suggest that our methods
have a high true positive rate (at least 59%) and low false
positive rate (;5%). There are a small number of genes
previously reported in Hcrt neurons (such as Foxa2) for
which the arrays simply showed no signal in any sample.
This suggests that there are some false negatives in our
data, which may be ameliorated in future studies using
RNA sequencing (RNA-seq). Also, TRAP does have some
low level of nonspecific background, as indicated by the
presence of signal from some glial genes (Fig. 2B, red
circles). We used the fold change from these glial genes to
establish a fold change threshold (0.47) below which we
cannot be certain whether a gene is expressed in Hcrt
neurons or not. The proposed narcolepsy autoantigen
Trib2 (Lim and Scammell 2010) falls below this threshold.
This suggests that if it is expressed in healthy Hcrt
neurons, it is at a much lower level in these cells than
surrounding tissue.

Our anatomical analysis of these molecular results
largely supported the array data but also discovered a
surprising molecular heterogeneity in these neurons,
with several gene products expressed only in a subset of
these neurons (Dlk1, Gpx3, Pcsk1, Lgals3, and Ngb). It
remains to be determined whether these represent truly
functionally distinct subsets of the Hcrt population or
are merely transiently expressed and reflect the state of
particular neurons at the time of perfusion, analogous to
the classically activity-induced protein cFos. Among
those assayed, Stat5b and Rfx4 showed the highest
concordance rate while remaining largely specific to Hcrt
neurons and thus could potentially serve as alternate
markers for the population in future studies. These would
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be of great interest to examine in human post-mortem
tissue from narcoleptic patients.

Additionally, we noted an unusual concordance be-
tween the expression of our candidate genes in Hcrt
neurons and in the axonal targets of Hcrt neurons: For
example, both Ngb and Lhx9 proteins were dimly
expressed in Hcrt neurons but more robustly expressed
in their targets in the laterodorsal tegmentum and para-

ventricular thalamus, respectively. This hints that tar-
get-mediated signals may in some way be contributing
to the gene expression of Hcrt neurons and will be an
interesting direction for future investigation.

Finally, while we emphasized here the clear signifi-
cance of the Hcrt system to narcolepsy, it is essential to
mark the accumulating evidence that these neurons may
also play a role in anxiety, depression, and reward in

Figure 5. Disturbances in behavior and Hcrt expression of Lhx9 knockout (KO) mice are not rescued by adult reinstatement of Lhx9
expression. During 48-h activity monitoring, Lhx9 knockout mice exhibited a 20% increase in time at rest, an estimate of sleep,
compared with wild-type (WT) mice (P < 0.05, ANOVA) (A), while both groups demonstrated intact circadian differences in time at rest
between the light and dark periods (P < 0.05, paired t-test) (B). (C) Lhx9 knockout mice also demonstrated a 57% decrease in ambulatory
activity, an estimate of wakefulness, relative to wild-type mice (P < 0.01, ANOVA). (D) The ambulatory differences were maintained
across the light and dark periods (P < 0.05, repeated measures ANOVA). (E) Confocal microscopy revealed double-immunofluorescent
labeling of GFP with orexin within Hcrt neurons, confirming successful targeting of hypocretinergic regions. (F) Representative
example of Lhx9 expression in the targeted region of the hypothalamus in Lhx9 knockout mice. The white asterisk represents a labeling
artifact at injection sites. (G,H) No differences were observed in time at rest or ambulatory activity between pre- and post-injection
activity monitoring for Lhx9-injected Lhx9 knockout mice. In addition, time at rest and ambulatory activity was comparable during
post-injection activity monitoring for both the Lhx9-injected Lhx9 knockout mice and the GFP-injected Lhx9 knockout mice (repeated
measures ANOVA). (I) No difference was noted in the number of Hcrt neurons between Lhx9-injected and GFP-injected animals. (*) P <

0.05; (**) P < 0.01. Values represent mean 6 SEM.
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addition to their roles in sleep and feeding (Borgland and
Labouebe 2010; Sakurai and Mieda 2011). Thus the data
we provide here may serve to both better inform these
studies and provide an important tool to profile Hcrt
neurons under a variety of conditions.

Materials and methods

Animal research committees

All procedures involving animals were approved by the appro-
priate institutional animal care and use committees.

Generation of mice

A bacterial artificial chromosome (BAC), RP23-258L05, was mod-
ified as described (Doyle et al. 2008) to insert the eGFP-RPL10a
transgene at the translation start site of the Hcrt gene. Successful
modification was confirmed with Southern blot, and lack of gross
rearrangement of the BAC was checked by BAC fingerprinting.
Modified BAC DNA was purified with CsCl gradient centrifuga-
tion, dialyzed into injection buffer, and injected into FVB mouse
eggs. Eggs were transplanted into pseudopregnant Swiss Webster
dams, and the resultant pups were screened with tail tip PCR for
eGFP to identify founders. Each founder was crossed to C57/bl6j
wild-type mice, and F1 progeny were genotyped and then pro-
cessed for anatomy as described below.

Immunofluorescence microscopy

Mice were killed and then perfused with phosphate-buffered
saline (PBS) followed by 4% paraformaldehyde in PBS. Brains
were dissected, cryoprotected in 30% sucrose PBS solution, and
then frozen and sectioned serially on a Leica cryostat into PBS
and 0.1% sodium azide for storage at 4°C. Floating sections were
blocked in 5% normal donkey serum, 0.25% Triton, and PBS for
30 min and then incubated overnight with primary antibodies in
the same buffer. All primary antibodies are detailed in Supple-
mental Table S3. Sections were then washed three times with
PBS and then incubated for 60–90 min with the appropriate
Alexa fluorophore-conjugated secondary antibodies and nuclear
dyes (DAPI and or TOPO-3-Iodide, Life Technologies). Images
were acquired on a LSM 510 Zeiss confocal microscope (Fig. 1) or
a Perkin Elmer UltraView Vox spinning-disk confocal on a Zeiss
Axiovert microscope (all other confocal figures).

Immunohistochemistry

Mice were processed as above. For anti-Orx-A DAB immunohis-
tochemistry, brains were processed using multibrain technology
by Neuroscience Associates as described (Doyle et al. 2008) using
orexin A antibody (1:10,000; Calbiochem) and a nickel-enhanced
DAB substrate for HRP. Sections were digitized with a Zeiss
Axioskop2 and customized macros.

Anatomical analysis

All cell number quantification was done on a series of coronal
sections spaced 200–210 mm apart through the hypothalamus in
a minimum of three Lhx9 knockout and three wild-type mice,
typically littermates. Counts from two independent investiga-
tors, blinded to condition, were averaged for each mouse. For
Hcrt, Mch, and Th staining, all neuron labeling with any anti-
body was counted in any section showing any Hcrt neuronal
labeling. Statistical comparisons were with unpaired two-tailed
t-tests, as calculated in Microsoft Excel. For Dlk1, Celf6, Nnat,

Ngb, Gpx3, Psck1, Stat5b, and Lhx9, cells were counted from
confocal images of all available Hcrt-expressing regions from
three wild-type mice. Antibodies used are detailed in Supple-
mental Table S4.

For Allen Brain Atlas analysis, the 188 TRAP transcripts were
mixed with the top 188 transcripts from the Pabp study ‘‘Sup-
plemental Excel File 1’’ from Cvetkovic-Lopes et al. (2010) and
188 transcripts selected at random from the genes present on the
microarray and evaluated by two blinded reviewers using the
following criteria to identify a HLP. First, transcripts with-
out coronal sections were excluded, as were any ISH with no
detectable signal anywhere in tissue. Then, if there was broad
labeling of cells in the hypothalamus (or indeed, the entire brain),
then they were scored as a 4: broadly expressed, including HLP
(e.g., Snap25). If there was strong labeling in some population
somewhere in the brain and absolutely no labeling in the region
of an HLP, then they were scored as a 5: not expressed in HLP
(e.g., Agrp). Looking at the entire brain, if the only signal was in
a HLP, then they were scored as a 1: unique to Hcrt neurons (e.g.,
Hcrt). Looking just within the hypothalamus and ignoring the
rest of the brain, if the only signal was in a HLP, then they were
scored as a 2: unique within hypothalamus (e.g., Igfbp3, which
showed an HLP plus labeling of choroid). Finally, looking just
within the hypothalamus, if the labeling overlapped with HLP
but also showed labeling in just a few other populations in
hypothalamus, then it was scored as a 3: enriched in Hcrt neurons
(e.g., Pdyn and Nptx2). Generally, markers from the literature for
Hcrt neurons received scores between 1 and 3. For the purpose of
statistical analysis, scores of 1–3 were pooled, and x2 tests were
calculated in Microsoft Excel, comparing observed distributions
(TRAP or Pabp) with those expected by chance (random).

ISH

ISH was performed as described previously (VanDunk et al. 2011)
on coronal sections of P28 wild-type mouse brains that were
immersion-fixed in 4% paraformaldehyde for 20 min and cryo-
protected in sucrose before sectioning. Digoxigenin-labeled
riboprobe was transcribed with T7 RNA polymerase using the
templates described (Supplemental Table S3). Hybridization was
performed with 1–2 mg/mL probe for 12–16 h at 65°C. Slides were
then washed with 23 SSC for 15 min at 62°C followed by two
washes in 0.23 SSC for 30 min each at 62°C. After blocking in
PBS, Triton (PBT), and 10% normal horse serum, slides were
incubated in alkaline phosphatase-conjugated anti-DIG antibody
(1:2000) overnight at 4°C. The following day, slides were washed
twice in PBT for 30 min each, and color development proceeded
in the dark using NBTand BCIP as a substrate. Color was allowed
to develop for 2–20 h, depending on the abundance of the message.
After three washes in PBS, slides were fixed in 4% paraformalde-
hyde for 15 min and stained for Hcrt following standard immu-
nofluorescence protocol, and data were acquired as above. NBT
and BCIP signal was inverted, pseudocolored green, and overlayed
on Hcrt staining in ImageJ.

TRAP assays and analysis

Four replicate pools of four to six mixed-sex 6- to 12-wk-old mice
from the brightest transgenic line were killed, and brains were
removed and transferred to ice-cold dissection buffer contain-
ing cycloheximide; diencephalon was harvested with the aid
of a dissecting microscope. TRAP was conducted as described
(Heiman et al. 2008). Briefly, each pool was homogenized for 12
strokes in a glass Teflon homogenizer on ice in buffer (10 mM
HEPES at pH 7.4, 150 mM KCl, 5 mM MgCl2, 0.5 mM
dithiothreitol, 100 mg/mL cycloheximide, protease inhibitors,
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recombinant RNase inhibitors). Nuclei and debris were removed
with centrifugation at 2000g for 10 min at 4°C. DHPC (Avanti)
and NP-40 (Ipgal-ca630, Sigma) were added to the supernatant to
final concentrations of 30 mM and 1%, respectively. After 5 min
of incubation on ice, the supernatant was centrifuged at 20,000g
for 15 min, and the pellet was discarded. The supernatant was
mixed with protein G-coated magnetic beads (Invitrogen/Life
Technologies), previously conjugated with a mix of two mono-
clonal anti-GFP antibodies (Doyle et al. 2008), and incubated
with rotation for 30 min at 4°C. Beads were washed three times
with high-salt wash buffer (10 mM HEPES at pH 7.4, 350 mM
KCl, 5 mM MgCl2, 1% NP-40, 0.5 mM dithiothreitol, 100 mg/mL
cycloheximide), and RNA was purified from ribosomes using
Trizol (Invitrogen) following the manufacturer’s protocols, fol-
lowed by DNase treatment, further purification, and concentra-
tion with Rneasy min-elute columns following the manufac-
turer’s protocol (Qiagen). RNA was also harvested in parallel
from each unbound fraction of affinity purification as a measure
of total tissue RNA. RNA concentration of all samples was
measured with a Nanodrop spectrophotometer, and integrity
was confirmed with PicoChips on the Agilent BioAnalyzer
(RIN>8).

Fifteen nanograms of each RNA sample was amplified with
the Affymetrix Two-Cycle amplification kit following the man-
ufacturer’s instructions, and the quality of labeled aRNA was
assessed with Bioanalyzer. Labeled RNA from immunoprecipi-
tated ribosomes and total tissue RNA were hybridized to sep-
arate Affymetrix Mouse Genome 430 2.0 arrays and scanned
following the manufacturer’s protocols. Raw data are available
from the Gene Expression Omnibus (GSE38668).

Data were analyzed using the Bioconductor module within
the statistical package R. Data quality was assessed by examin-
ing box plots, histograms, correlation coefficients, false positive
rates, and scatter plots comparing replicate experiments. Data
were normalized as described but using Affymetrix chip defini-
tion files. Briefly, GC robust multiarray average (GCRMA) was
used to normalize within replicates and to biotinylated spike in
probes between conditions. In Supplemental Table S2, fold
change (FC), specificity index (SI), and pSI are reported for all
genes with expression >50 arbitrary fluorescent units and a fold
change greater than the background threshold of 0.5 (demarked
at the mean plus two standard deviations of the glial gene fold
changes) (Dougherty et al. 2010).

Gene list analysis was conducted using two tools in parallel.
Cytoscape 2.8.2 with the BiNGO plugin (2.4) (Maere et al. 2005)
was run to identify those GO biological processes enriched (P <

0.005) in the 188 Hcrt neuron transcripts using a hypergeometic
test with B-H correction. The same list was analyzed using the
functional annotation clustering tool of the DAVID interface
(Dennis et al. 2003).

List-wise comparison with previous studies was conducted in
Excel using the data from Table 3 of Honda et al. (2009) and
‘‘Supplemental Excel File 1’’ from Cvetkovic-Lopes et al. (2010).
Markers considered for x2 were Gal, Hcrt, Pdyn, Igfbp3, and
Cartpt.

Sleep physiology

Polysomnographic sleep–wake cycle analysis of mice was per-
formed as described previously (Bero et al. 2011; Roh et al. 2012).
Briefly, EEG and electromyogram (EMG) electrodes were im-
planted simultaneously 10 d prior to recording. For EEG re-
cording, two stainless steel screws attached to wire electrodes
were placed over the right frontal and parietal bone. EMG was
recorded by two wire electrodes directly inserted into the neck
muscles. The ground electrode was placed on the skull over the

cerebellum. Insulated leads from the EEG and EMG electrodes
were soldered to a miniconnector. After 10 d of habituation after
surgery, mice were transferred to recording cages maintained in
12-h light/12-h dark conditions (light on at 6:00 a.m.), and the
miniconnector was connected to flexible recording cables. Mice
were habituated to the recording cages for three more days. At
the end of the habituation period, EEG and EMG recordings
began. EEG and EMG recordings were assessed using a P511K
A.C. Preamplifier (Grass-Telefactor Instruments), digitized with
a DigiData 1440A data acquisition system (Molecular Devices),
and recorded digitally using pClamp 10.2 (Molecular Devices).
Using sleep scoring software (SleepSign, Kissei Comtec Co. Ltd.),
EEG and EMG signals were binned into 10-sec epochs as wake-
fulness, REM sleep, and NREM sleep based on the standard
criteria of rodent sleep. Semiautomatic sleep scoring was visually
inspected and corrected when appropriate. The automatic analy-
sis and visual inspection were performed in a blinded state to the
genotypes of mice. Episodes of cataplexy, defined as described
(Scammell et al. 2009), were not seen in Lhx9 knockout mice.

Generation of plasmids

Lhx9 (Open Biosystems, clone 40117467, BC131622.1) was
cloned with Gateway technology into a custom Gateway-com-
patible lentiviral vector derived from the previously published
FCIV (Li et al. 2010) by replacing the IRES-Venus sequence with
a Gateway acceptor cassette. This plasmid was validated with
antibody staining for Lhx9 expression following both transient
transfection and lentiviral transduction. For the luciferase as-
says, a fragment of the mouse promoter corresponding to the
3 kb upstream of the translation start site was cloned by PCR
into the pGL3 basic vector (Invitrogen).

Overexpression of Lhx9 in the unilateral lateral
hypothalamus

To investigate whether the overexpression of Lhx9 augments
Hcrt signaling in the brain, Lhx9 lentiviral vector under the
control of a ubiquitin promoter (1.5 mL, 1.9 3 109 IU/mL) was
unilaterally injected right above the left side lateral hypothala-
mus (anterioposterior [AP] �1.82, mediolateral [ML] �0.3, dor-
soventral [DV] 5.1 mm, directed vertically) in C57/Bl6 female
mice. For a control group, GFP lentiviral vector (1.5 mL, 5 3 107

IU/mL) was infused in the same way in C57/Bl6 female mice.
After 8 d of viral vector infusion, mice were perfused, and brain
tissue was obtained and stained as described. Immunofluores-
cence for either GFP or Lhx9 was used to confirm accurate
targeting of viral injections. Two independent researchers
blinded to the treatment manually counted the total number
of cells stained with Hcrt.

Forty-eight-hour activity monitoring

The activity monitoring procedure was adapted from previously
published methods (Dougherty et al. 2013). Briefly, Lhx9 knock-
out and wild-type mice were placed in transparent polystyrene
chambers (47.6 3 25.4 3 20.6 cm) containing food and clean
home cage bedding spread on the floor and a water bottle
attached to one wall. A metal grid containing a 4 3 8 matrix of
photobeam pairs surrounded each chamber and was connected
to a computer equipped with software (MotorMonitor, Kinder
Scientific) that used an algorithm to quantify photobeam breaks
as horizontal ambulations (an estimate of wakefulness) and the
lack of photobeam breaks as time at rest (an estimate of sleep). A
rest threshold of 40 sec was used based on previous findings that
this threshold is optimal for photobeam assessment of inactivity
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as an estimate of sleep (Pack et al. 2007). Activity monitoring
began halfway through the light cycle and continued for 48 h.
The testing room lighting was a 12-light:12-h dark cycle (light on
at 6:00 a.m.). Activity monitoring was conducted in two sessions
separated by 1 mo, during which the Lhx9 knockout mice
received Lhx9 or GFP lentiviral vector injections. SPSS statistics
software was used for data analyses. To determine differences
between genotypes during session 1, one-way ANOVAs were
conducted on average time at rest and ambulations per hour,
a repeated measures ANOVA was conducted on 6-h blocks of
total ambulations across the light/dark cycle, and paired t-tests
were conducted on time at rest within genotypes to assess
circadian rhythms. One wild-type mouse was excluded from
ambulation analyses as an outlier (z-score > 2.0). For analysis of
the influence of Lhx9 lentiviral vector injections on time at rest
and ambulations of Lhx9 knockout mice, repeated measure
ANOVAs were conducted on pre- and post-injection perfor-
mance. One Lhx9-injected mouse was excluded because the
injection was off-target.

Viral rescue of Lhx9 in Lhx9 knockout mice

To investigate whether the rescue of Lhx9 affects behavioral
phenotype as well as Hcrt signaling in Lhx9 knockout mice,
Lhx9 or GFP lentiviral vector was bilaterally injected as de-
scribed above in Lhx9 knockout mice. On day 13 of viral vector
infusion, mice underwent behavioral tests as described above
followed by perfusion at the end of tests. After confirmation of
target engagement and viral vector expression in each mouse,
total numbers of Hcrt neurons were counted manually by two
researchers blinded to the treatment.
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