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Neurobiology of Disease

The Effects of Peripheral and Central High Insulin on Brain
Insulin Signaling and Amyloid-� in Young and Old APP/PS1
Mice

Molly Stanley, X Shannon L. Macauley, X Emily E. Caesar, Lauren J. Koscal, Will Moritz, X Grace O. Robinson,
X Joseph Roh, Jennifer Keyser, Hong Jiang, and David M. Holtzman
Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington
University, St. Louis, Missouri 63110

Hyperinsulinemia is a risk factor for late-onset Alzheimer’s disease (AD). In vitro experiments describe potential connections between
insulin, insulin signaling, and amyloid-� (A�), but in vivo experiments are needed to validate these relationships under physiological
conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake,
behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial
fluid (ISF) and plasma A� compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in
response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the
hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently in-
creased, but ISF A� was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin
has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with
significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma A�, whereas direct delivery of insulin to the
hippocampus significantly increased tissue insulin and insulin signaling, with no effect on A� in old mice. These results suggest that the
brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate A� in
vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma A� in young and old
mice, independent of neuronal insulin signaling.
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Introduction
Alzheimer’s disease (AD), the most common cause of dementia,
is characterized by a cascade of pathological events, including the

formation of extracellular amyloid plaques and intracellular neu-
rofibrillary tangles. The majority of AD cases (�99%) are classi-
fied as sporadic or late-onset where age, genetics, environment,
and other diseases likely play a role in its development (Holtzman
et al., 2011; Musiek and Holtzman, 2015). Type 2 diabetes (T2D)
increases the risk of AD twofold to fourfold (Sims-Robinson etReceived July 2, 2016; revised Sept. 13, 2016; accepted Sept. 25, 2016.
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Significance Statement

The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulin-
emia and AD. In vitro experiments have found direct connections between high insulin and extracellular A�, but these mecha-
nisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in
awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular A�. We also found
that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further
elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment.
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al., 2010) and with approximately one-third of Americans age 65
and older having T2D (www.diabetes.org), a substantial amount
of research seeks to understand the connections between T2D
and AD. T2D is characterized by hyperinsulinemia, insulin resis-
tance, and hyperglycemia. Longitudinal data suggest that hyper-
insulinemia, even without T2D, can double the risk of developing
AD (Luchsinger et al., 2004). Cross-sectional studies have also
found that hyperinsulinemia is associated with an increased risk
of AD (Kuusisto et al., 1997) and the presence of amyloid plaques
(Willette et al., 2015). AD patients reportedly have higher blood
insulin levels compared with healthy controls (Fujisawa et al.,
1991; Craft et al., 1998; Ma et al., 2016). Therefore, high insulin,
specifically, may be modulating the risk of AD in several potential
ways (Stanley et al., 2016).

The formation of amyloid plaques begins �15 years before the
onset of clinical symptoms (Sperling et al., 2011), providing a win-
dow for other physiological changes to initiate or influence amyloid
deposition. Amyloid plaques are formed by the accumulation and
aggregation of extracellular amyloid-� (A�), which is released from
cells into the interstitial fluid (ISF) (Holtzman et al., 2011; Musiek
and Holtzman, 2015). The conversion of monomeric A� to toxic
species and amyloid plaques is concentration-dependent (Selkoe,
2004; Bero et al., 2011), thus investigating the regulation of extracel-
lular A� levels is crucial in understanding AD pathogenesis. High
insulin promotes amyloid precursor protein (APP) processing to
increase extracellular A� through activation of insulin receptor (IR)
signaling in vitro (Gasparini et al., 2001; Pandini et al., 2013; Stöhr et
al., 2013). In mice, endogenous neuronal IR signaling contributes to
higher A� levels and amyloid deposition in vivo (Stöhr et al., 2013).
Because both insulin and A� are degraded by the insulin degrading
enzyme (IDE), in vitro experiments show that IDE will preferentially
degrade insulin leading to higher levels of extracellular A� if insulin
levels are high (Qiu et al., 1998). Injection of exogenous A� into the
rat brain to study A� clearance corroborates that coinjection with
insulin significantly reduces A� clearance (Shiiki et al., 2004), but
this has not been validated under endogenous circumstances.

The majority of brain insulin is made in the periphery and crosses
the blood–brain barrier (BBB) through a saturable, receptor-
mediated process (Banks et al., 1997; Banks, 2004). However, there is
evidence that insulin may also be produced in the brain (Mehran et
al., 2012). Hyperinsulinemic-euglycemic clamps increase plasma
and CSF insulin and A� levels in humans (Watson et al., 2003; Fishel
et al., 2005). Interestingly, this hyperinsulinemia also led to subtle
improvements in memory performance. Based on these experi-
ments and the notion that the brain becomes insulin resistant in AD
(Craft et al., 1998; Bomfim et al., 2012; Talbot et al., 2012), intranasal
insulin is being tested in clinical trials for AD (Wadman, 2012).
Although previous experiments have been crucial in understanding
the potential interactions between insulin, insulin signaling, and A�,
in vivo, mechanistic experiments are still needed to determine
whether physiological hyperinsulinemia increases brain insulin and
positively regulates A�. It is also unclear whether direct delivery of
insulin to the brain, the concept behind intranasal treatment, mod-
ulates IR signaling or A� in vivo. Here, we determined the effects of
peripheral, physiological hyperinsulinemia and CNS delivery of in-
sulin on IR signaling and ISF A� in the absence and presence of
amyloid pathology to further understand the role of insulin as a risk
factor and its effects in the presence of AD pathology.

Materials and Methods
Animals. Male and female mice heterozygous for the APPswe/PS1�E9
(APP/PS1) transgene (Borchelt et al., 1997) on a B6C3 background were
used. Mice were used at 3 months (young) or 12 months (old) and gender

matched for all experiments. Mice were given food and water ad libitum
and maintained on a 12:12 light/dark cycle. At the end of each experi-
ment, mice were perfused with ice-cold PBS with 0.3% heparin. All pro-
tocols were approved by the Animal Studies Committee at Washington
University.

Hyperinsulinemic-euglycemic clamps with microdialysis. Three-month
or 12-month-old APP/PS1 mice (n � 7 per group) underwent catheter-
ization of the jugular vein and femoral artery 5 d before the clamps as
described previously (Macauley et al., 2015). Guide cannulas (BR-style
Bioanalytical Systems) were implanted into the left hippocampus (from
bregma anteroposterio �3.1 mm, mediolateral �2.5 mm, dorsoventral
�1.2 mm at 12° angle) and secured with dental cement 2 d before clamps,
and mice were transferred to Raturn sampling cages (Bioanalytical Sys-
tems). The left hemisphere was collected after perfusion, and cresyl violet
staining was used to confirm probe placement. One day before clamps,
microdialysis probes (2 mm; 38 kDa molecular weight cutoff, BR-style,
Bioanalytical Systems) were inserted into the guide cannula and con-
nected to a syringe pump infusing aCSF at 1 �l/min (1.3 mM CaCl2, 1.2
mM MgSO4 3 mM KCl, 0.4 mM KH2PO4, 25 mM NaHCO3, 122 mM NaCl,
0.15% BSA, pH 7.35). At the same time, femoral and jugular catheters
were externalized and flushed. The jugular line was connected to a
Y-connector (Instech Laboratories) and two syringe pumps infusing
0.9% NaCl at 1 �l/min. The arterial line was also connected to a syringe
pump infusing NaCl at 1 �l/min overnight to keep the lines clear. Hourly
collection of hippocampal ISF began at this time. The next morning,
mice were fasted 4 –5 h before and during the clamps. Right before the
clamp, a blood sample was collected into serum separating tubes (BD
Microtainer), briefly centrifuged at 4° and serum collected and stored at
�80 until use. During hyperinsulinemic-euglycemic clamps, one of the
Y-connected jugular lines was infused with insulin (Humulin-R, Lilly) in
0.1% BSA-PBS at a constant rate (1.6 �l/min). Insulin was prepared
according to body weight to delivery either 4 mU/kg/min or 20 mU/kg/
min. Controls received 0.1% BSA-PBS alone at the same rate. The second
Y-connected jugular line was infused with 20% dextrose in PBS in those
that received insulin or PBS alone in controls. Every 10 min, blood was
sampled via the femoral artery and blood glucose measured by a hand-
held glucometer (Coutour, Bayer). The glucose infusion rate was ad-
justed to clamp blood glucose at fasting, euglycemic levels (120 –140
mg/dl in young, 90 –110 mg/dl in old). A second blood sample was col-
lected at 3 h. At the end of the 4 h clamp, insulin infusion was stopped,
food was returned, and glucose infusion was titrated down until mice
maintained euglycemia without infusion (�30 min). Hourly ISF col-
lection continued throughout the clamp and for 12 h after clamp. ISF
A�1-X, glucose, and lactate were measured immediately at the end of
the experiment.

Another set of 3-month-old APP/PS1 mice (n � 4 – 8 per group) were
subjected to the same experiment (hyperinsulinemic-euglycemic
clamp � hippocampal microdialysis) but ISF collected in 30 min frac-
tions to measure ISF insulin. Mice were killed after 1.5 h of clamp to
collect CSF. Additional 3-month-old (n � 6 per group) and 12-month-
old (n � 7–9 per group) APP/PS1 mice underwent the hyperinsulinemic-
clamp procedure described above, without microdialysis, and killed after
1–1.5 h of clamp to collect CSF and tissue to measure insulin signaling.
Blood samples were taken before the start of the clamp and after 1 h of
clamp as described above. ISF, CSF, and tissue were frozen on dry ice
immediately and stored at �80° until use.

Direct delivery of insulin via reverse microdialysis. Guide cannula im-
plantation and hippocampal microdialysis was performed as described
above. Insulin (Humulin-R, Lilly) was infused directly into the hip-
pocampus in aCSF for 1 h at 40 or 400 nM after 8 h of baseline ISF
collection in 3-month-old (12–20 per group) and 12-month-old (9 –12
per group) APP/PS1 mice and 12-month-old wild-type mice (n � 4 per
group). Controls received regular aCSF. Mice were immediately killed
after 1 h of treatment and the left hippocampus around the probe and
right hippocampus without a probe collected for analysis of insulin and
insulin signaling. ISF A�1-X, glucose, and lactate were measured imme-
diately at the end of the experiment for 9 h of samples.

Insulin signaling ELISAs. Frozen brain tissue (hippocampus or hypo-
thalamus) and leg muscle collected at 1 h into hyperinsulinemic-
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euglycemic clamps in 3-month-old (n � 6 per group) and 12-month-old
APP/PS1 mice (n � 7–9 per group) and left and right hippocampi col-
lected after 1 h of insulin treatment via reverse microdialysis in 3-month-
old (n � 7–12 per group) and 12-month-old (n � 7 per group) APP/PS1
and 12-month-old WT (n � 4 per group) mice were analyzed for insulin
signaling. Tissue was hand homogenized in 10� w/v RIPA buffer with
protease and phosphatase inhibitors (Roche). Homogenates were centri-
fuged at 14,000 rpm for 30 min at 4°. Supernatant was collected and used
as tissue lysate. Total protein concentration in lysates was determined by
Micro BCA (Thermo Scientific) according to the manufacturer’s ins-
tructions. Phospho-AKT (Ser473)/pan-AKT was measured by ELISA
(Sigma-Aldrich: catalog #RAB0012) according to the manufacturer’s in-
structions. Phospho and total AKT was measured in the same samples on
the same plate and the ratio of phospho:total determined for each sam-
ple. Phospho-IR (Tyr1158)/pan-IR� was measured by ELISA (Invitro-
gen: catalog #KHR9121; KHR9111) according to the manufacturer’s
instructions. All data were normalized to controls, except for direct de-
livery of insulin via reverse microdialysis where data were normalized to
the right hippocampus without a microdialysis probe.

Western blots. Phospho:total AKT was measured to confirm that the
ELISA described above accurately represented the same change as a Western
blot, the conventional method of measuring p-AKT. Hippocampal lysates
(50 �g protein) described above were boiled in LDS sample buffer, run on a
4%–12% Bis-Tris gel, and transferred to 0.2 �M nitrocellulose membrane.
The membrane was cut at 50 kDa and the bottom half blocked and incubated
in primary GAPDH:HRP antibody (Abcam #9484). The top half was
blocked and incubated in primary P(Ser473)-AKT antibody (Cell Signaling
Technology #9271) followed by anti-rabbit secondary (Jackson ImmunoRe-
search Laboratories #211-032-171), and both halves were visualized with
Lumagen ECL and imaged with GeneSnap. The top half was stripped (10%
SDS, 7% 2-mercaptoethanol, PBS) and reprobed with primary AKT anti-
body (Cell Signaling Technology #9272), secondary anti-rabbit, and visual-
ized using ECL and Genesnap. OD of the bands was measured with ImageJ.

Insulin and C-peptide measurements. Serum insulin and C-peptide
were measured by ELISA (Alpco: catalog #80-INSMSU-E01; 80-CPTMS-
E01) according to the manufacturer’s instructions. ISF, CSF, and tissue
insulin levels were undetectable by commercial ELISA. Therefore, ISF,
CSF, and tissue lysates described above were sent to the Core Laboratory
for Clinical Studies at Washington University in St. Louis. This facility
used a Singulex Erenna Immunoassay System to measure insulin with
better sensitivity (�10 pg/ml). Some tissue lysate samples were still below
the level of detection and those are plotted as 10 pg/ml for comparison.

IDE activity measurements. IDE activity was measured in brain tissue
from 3-month-old APP/PS1 mice that underwent hyperinsulinemic-
euglycemic or PBS clamps (n � 4 –7 per group) for 1 h using the Sen-
soLyte IDE Activity Assay Kit (AnaSpec: catalog #AS-72231) according to
the manufacturer’s instructions. Frozen cortex was hand homogenized
5� w/v in assay buffer, centrifuged, and the supernatant used as lysate.
Fluorescence was measured every 10 min for 90 min, and there was no
difference in kinetics between groups. The relative fluorescence at 90 min
per milligrams of protein (determined by MicroBCA) was plotted rela-
tive to PBS controls.

Glucose and lactate measurements. ISF glucose and lactate and serum
lactate were measured with the YSI 2900 analyzer (YSI) according to the
manufacturer’s instructions.

A�1-X ELISA. ISF and plasma A�1-x were measured by in-house
ELISA described previously (Macauley et al., 2015). Briefly, plates were
coated with a monoclonal capture antibody targeted against A�13–28
(m266) and detected with biotinylated antibody against A�1–5 (3D6).
These antibodies were generously provided by Eli Lilly. After incubating
in Streptavidin-poly-HRP-20, the assay was developed using Super Slow
TMB (Sigma) and read at 650 nm.

Quantification of A� deposition. Brains of 3- and 12-month-old APP/
PS1 mice (n � 5 per group) were used to quantify the amount of A�
deposition as described previously (Macauley et al., 2015). Briefly, brains
were sliced into 50 �m sections on a freezing microtome. Serial sections
from anterior to posterior hippocampus were immunostained using bi-
otintylated, HJ3.4 antibody (anti-A�1–13, mouse monoclonal antibody)
(Macauley et al., 2015) and developed using a Vectastain ABC kit and

DAB reaction. The brain sections were imaged using a NanoZoomer slide
scanner (Hamamatsu Photonics) and the percentage area occupied by
A� staining was quantified by a blinded researcher. Three-month-old
mice had no A� staining as expected; therefore, statistical tests could not
be performed.

Data analysis. All data are represented by mean 	 SEM. Statistical
significance was determined by two-tailed, unpaired t test (comparing
two groups), one-way ANOVA with Dunnett’s post test (comparing 3
groups, treatment vs control), or two-way ANOVA with Bonferroni post
test (comparing 3 groups, baseline vs treatment for each group). Signif-
icant outliers, determined by Grubbs’ test ( p 
 0.05) were excluded.
Statistical evaluation was performed using Graphpad Prism 5.

Results
Hyperinsulinemic-euglycemic clamps increase serum insulin
without altering glucose or lactate levels in young APP/PS1
mice
To determine how peripheral hyperinsulinemia, at physiological
levels, dynamically affects the CNS in awake animals, we per-
formed hyperinsulinemic-euglycemic clamps (Ayala et al., 2006)
combined with in vivo microdialysis (Cirrito et al., 2003; Macau-
ley et al., 2015). The clamps allow us to specifically modulate
blood insulin levels in awake, behaving mice while using micro-
dialysis to continuously collect ISF from the hippocampus. In
3-month-old APP/PS1 mice before A� deposition, we clamped
insulin at a postprandial level (4 mU/kg/min, �4-fold increase in
serum insulin) or supraphysiological level (20 mU/kg/min, �16-
fold increase in serum insulin) for comparison (Fig. 1A). PBS
controls underwent the same clamp procedures but received ve-
hicle infusions instead of insulin and glucose. There was a signif-
icant increase in serum insulin levels with 4 mU (p 
 0.05,
t � 2.6) and 20 mU (p 
 0.001, t � 16.0), but insulin levels in PBS
controls were unchanged. Because exogenous insulin was infused
in the 4 and 20 mU groups, endogenous insulin release should be
reduced in response. Therefore, serum C-peptide, which is core-
leased from pancreatic �-cells with insulin, can be used as a proxy
of insulin production. Serum C-peptide was reduced with
hyperinsulinemic-euglycemic clamps �2.5-fold in the 4 mU
group (p 
 0.01, t � 3.7) and �4.5-fold in the 20 mU group (p 

0.05, t � 3.1) (Fig. 1B). This suggests that endogenous insulin
release is reduced as expected. Because euglycemia was main-
tained in response to insulin by infusing dextrose at variable rates
to maintain blood glucose levels at 120 –140 mg/dl, there were no
differences in blood glucose during the clamps (Fig. 1C). ISF
glucose mirrors blood glucose levels due to facilitated diffusion
across the BBB (Macauley et al., 2015); therefore, no change in
hippocampal ISF glucose was observed during the clamps (Fig.
1D). The glucose infusion rate indicates how much glucose is
necessary to maintain euglycemia and is a metric of insulin re-
sponsiveness. As expected, more glucose was necessary to main-
tain euglycemia at the supraphysiological level of insulin (p 

0.05, t � 2.7: 52.9 	 7.6 vs 80.8 	 6.9 mg/kg/min) (Fig. 1E). We
previously found that hyperglycemic clamps increased ISF lac-
tate, which can be used as a marker of neuronal activity (Bero et
al., 2011; Macauley et al., 2015); however, no change in ISF lac-
tate in response to hyperinsulinemia was observed (Fig. 1F).
Hyperinsulinemic-euglycemic clamps increase blood lactate in
humans (Berhane et al., 2015), but no significant differences in
serum lactate levels were found in response to these clamps
in young APP/PS1 mice (Fig. 1G). We successfully increased
serum insulin to specific levels in awake, behaving mice using
hyperinsulinemic-euglycemic clamps. Although we suppressed
endogenous insulin release, we did not affect blood or brain glu-
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cose or lactate levels, which are known to independently modu-
late A�.

Hyperinsulinemic-euglycemic clamps do not increase CNS
insulin or insulin signaling but increase ISF and plasma A� in
young APP/PS1 mice
To determine whether elevated blood insulin in awake, behaving
mice affects CNS insulin levels, we measured hippocampal ISF
insulin during hyperinsulinemic-euglycemic or PBS clamps in
3-month-old APP/PS1 mice. No changes in ISF insulin were de-
tected in response to peripheral hyperinsulinemia (Fig. 2A).
Similar to ISF insulin, no significant increase in CSF insulin was
detected at 4 or 20 mU compared with PBS controls (Fig. 2B).
Others have reported that hyperinsulinemic-euglycemic clamps
modestly increase CSF insulin in humans, dogs, and rats (Stein et
al., 1987; Baura et al., 1993; Fishel et al., 2005), but this phenom-
enon has not been reported in mice. In addition, we attempted to
measure tissue levels of insulin from the cortex of these mice, but
only three samples tested had detectable levels of insulin (�10
pg/ml) and they were in both the PBS and insulin groups (data

not shown). One potential explanation for why higher insulin
levels were not detected in the ISF, CSF, or tissue could be that
high insulin may increase IDE levels (Zhao et al., 2004; Pandini et
al., 2013), thus increasing insulin degradation. IDE activity was
measured in brain tissue collected immediately after 1–1.5 h of
hyperinsulinemic-euglycemic or PBS clamps, but there was no
change in IDE activity (Fig. 2C). Because of the nature of the
receptor tyrosine kinase-mediated signaling cascade associated
with the IR, it is possible that insulin levels do not mirror changes
in insulin signaling due to signal amplification and widespread
downstream effects (Plum et al., 2005). To measure changes in
insulin signaling in response to hyperinsulinemic-euglycemic
clamps, brain regions and muscle tissue were collected immedi-
ately after 1–1.5 h of hyperinsulinemia. The muscle, which is
exposed to peripheral hyperinsulinemia in the 4 mU group, had
significantly increased phospho:total AKT (p-ser473), a major
hub in the IR signaling cascade, compared with PBS controls
(p 
 0.01, t � 3.6: 1.0 vs 1.5) (Fig. 2D). Conversely, no changes in
phospho:total AKT in the hippocampus or hypothalamus were
detectable following the insulin challenge (Fig. 2E,F). The same

Figure 1. Hyperinsulinemic-euglycemic clamps increase serum insulin without altering glucose or lactate levels in young APP/PS1 mice. A, Serum insulin levels at fasted baseline (solid) and
during hyperinsulinemic-euglycemic or PBS clamps (striped) (n � 7 per group). B, Serum C-peptide levels at fasted baseline and during the clamps (n � 5 or 6 per group). C, Blood glucose levels
at fasted baseline and average during the clamps: blood glucose was clamped between 120 and 140 mg/dl at euglycemic levels throughout the clamps to ensure that there were no changes between
baseline and clamp in any condition (n � 7 per group). D, ISF glucose levels during the clamps (n � 5–7 per group). E, Average glucose infusion rate throughout hyperinsulinemic-euglycemic
clamps, representing the amount of glucose necessary to maintain euglycemia (n � 7 per group). F, ISF lactate during the clamps as a percentage of 8 h of baseline (n � 5–7 per group). G, Serum
lactate levels during the clamps (n � 5 or 6 per group). Data are mean 	 SEM. NS, not significant. *p 
 0.05, **p 
 0.01, ***p 
 0.001 (two-way ANOVA with Bonferroni post test, A–C; one-way
ANOVA with Dunnett’s post test, D, F, G; or unpaired, two-tailed t test, E).
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trend was seen with phospho:total IR whereby the muscle was
increased at 4 mU but the hippocampus was unchanged (data not
shown). Therefore, physiological hyperinsulinemia in awake, be-
having mice did not increase detectable CNS insulin or insulin
signaling.

To explore whether hyperinsulinemia could affect ISF A�
without affecting insulin signaling, we measured hourly fractions
of hippocampal ISF A� in 3-month-old APP/PS1 mice during
baseline, hyperinsulinemic-euglycemic or PBS clamps, and after
clamp. Surprisingly, we found a modest increase in ISF A� in
response to hyperinsulinemia (Fig. 2G). Averaging over the 4 h
clamp for each animal, there was a significant increase in the 4
mU (9.1 	 1.7%: p 
 0.05, q � 2.6) and 20 mU (9.9 	 4%: p 

0.05, q � 2.8) groups compared with PBS controls (�0.7 	
1.6%). Interestingly, the effect of hyperinsulinemia on ISF A�
was not dose-dependent, as both postprandial and supraphysi-
ological insulin levels increased A� to the same degree. The in-
crease in ISF A� was not sustained after clamp in either insulin
group. In addition, we found that hyperinsulinemia increased
plasma A� in the 4 mU (20.5 	 8.3%: p 
 0.05, q � 3.3) and 20
mU (37.5 	 4.9%: p 
 0.01, q � 4.3) clamp groups compared
with PBS controls (�10.8 	 6.4%) as a percentage change from

baseline for each animal (Fig. 2H). These findings demonstrate
that acute hyperinsulinemia increases both plasma and ISF A�,
whereas brain insulin levels and insulin signaling remain unaf-
fected. This suggests the possibility that high blood insulin acts
peripherally to increase A� levels or influences the net transport
of A� between blood and brain.

Direct delivery of insulin to the hippocampus increases brain
insulin and insulin signaling without modulating ISF A� in
young APP/PS1 mice
To further address the relationship between insulin signaling and ISF
A�, insulin was delivered directly into the hippocampus via reverse
microdialysis in 3-month-old APP/PS1 mice. This approach by-
passed the BBB to determine directly whether high insulin is capable
of increasing extracellular A� in vivo. The experimental design con-
sidered the Kd of the IR in non-neural tissues (Mosthaf et al., 1990;
Weiland et al., 1991), that only a fraction of the insulin diffuses from
the microdialysis probe into the surrounding tissue, and IR signaling
is maximally increased by �20 min of exposure to high insulin in
vivo (Wojtaszewski et al., 2000). Therefore, insulin was delivered at
doses of 40 and 400 nM for 1 h and ipsilateral hippocampal tissue and
contralateral hippocampal tissue as a control were immediately col-

Figure 2. Hyperinsulinemic-euglycemic clamps do not increase CNS insulin or insulin signaling but increase ISF and plasma A� in young APP/PS1 mice. A, ISF insulin levels at fasted baseline and
average during hyperinsulinemic-euglycemic or PBS clamps (n � 4 – 8 per group). B, CSF insulin in samples collected immediately after 1–1.5 h of clamp (n � 7–10 per group). C, IDE activity,
normalized to total protein per sample, in cortex collected immediately after 1–1.5 h of clamp (n �4 –7 per group). D–F, Phospho(ser473):total AKT in leg muscle, hippocampus, and hypothalamus
collected after 1 h of 4 mU or PBS clamp. Normalized to PBS controls (n � 6 per group). G, Hourly ISF A�1-X measurements during 8 h of baseline, 4 h of clamp, and 13 h after clamp plotted as
percentage change from baseline. Open circles represent PBS. Gray squares represent 4 mU. Dark gray diamonds represent 20 mU. Average ISF A�1-X during the 4 h clamp was used to compare the
effect of hyperinsulinemia on ISF A�1-x compared with PBS controls (n � 7 per group). H, Plasma A�1-X plotted as percentage change from baseline. Baseline samples were collected after fasting
and clamp samples collected 1 h into clamp (n � 3– 6 per group). Data are mean 	 SEM. NS, not significant. *p 
 0.05, **p 
 0.01 (two-way ANOVA with Bonferroni post test, A; one-way ANOVA
with Dunnett’s post test, B, C, G, H; or unpaired, two-tailed t test, D–F ).
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lected to measure tissue insulin and insulin signaling. In controls that
received aCSF without insulin, insulin levels in the left hippocampus
were undetectable in 9 of 11 samples. For comparison, those samples
with 
10 pg/ml are plotted as 10 pg/ml (Fig. 3A). Tissue insulin was
dose-dependently increased with 40 nM (�40-fold increase: p 

0.01, q � 3.9) and 400 nM (�100-fold increase: p 
 0.001, q � 8.7)
(Fig. 3A). To determine the level of IR signaling in response to this
insulin, the level of phospho:total AKT in the ipsilateral hippocam-
pus was determined relative to the uninjected contralateral hip-
pocampus. P-(ser473)-AKT was dose-dependently increased in the
ipsilateral hippocampus with insulin compared with controls, with a
significant increase at the 400 nM dose (p 
 0.01, q � 3.5: 1.3 	 0.07
vs 1.8 	 0.13) (Fig. 3B). This suggests a large increase in brain insulin
is necessary to detect a significant change in p-AKT in vivo. A small
increase in p-AKT was observed in the ipsilateral hippocampus in
aCSF controls, likely due to the presence of the microdialysis probe,
but this change was minor compared with the increase with insulin
(controls: 1 	 0.03 vs 1.3 	 0.07, p 
 0.05; 40 nM: 1 	 0.03 vs 1.5 	

0.1; 400 nM: 1 	 0.09 vs 1.8 	 0.13; both p 

0.001). Previous reports demonstrate that
insulin delivery to the hippocampus re-
sulted in alterations in ISF glucose and lac-
tate (McNay et al., 2010); however, no
differences in ISF glucose or lactate were de-
tected in the injected hippocampus (Fig.
3C,D). In the presence of high tissue insulin
and elevated IR signaling, there was no sig-
nificant differences in ISF A� compared
with 8 h of baseline (Fig. 3E). These experi-
ments confirm that elevated levels of insulin
and increased IR signaling are not related to
higher ISF A� levels in vivo. This further
supports that the modest increase in ISF A�
with hyperinsulinemic-euglycemic clamps
was independent of CNS-derived neuronal
IR signaling.

Changes in amyloid pathology, glucose
levels, and insulin sensitivity with age
in APP/PS1 mice
To determine whether the presence of A�
deposition and amyloid plaques would in-
fluence the response to peripheral or
CNS-delivered insulin, 12-month-old
APP/PS1 mice were used. These mice have
significant amyloid pathology in both the
cortex and the hippocampus compared
with the 3-month-old APP/PS1 mice,
which have no amyloid pathology (Fig.
4A,B). Previously, we reported that base-
line hippocampal ISF lactate levels were
significantly increased in 12-month-old
APP/PS1 mice compared with 3-month-
old APP/PS1 mice (Harris et al., 2016).
Here, we found that fasted blood glucose
as well as hippocampal ISF glucose were
lower in 12-month-old compared with
3-month-old APP/PS1 mice (blood: p 

0.001, t � 4.1, 129.0 	 5 vs 95.9 	 6.5
mg/dl; ISF: p 
 0.01, t � 2.5, 0.20 	 0.01
vs 0.15 	 0.01 mM) (Fig. 4C,D). There-
fore, euglycemia for 12-month-old mice
in hyperinsulinemic-euglycemic clamp

experiments was lowered to 90 –110 mg/dl. There were no signif-
icant differences in fasted serum insulin between 3- and 12-
month-old APP/PS1 mice (Fig. 4E). However, there was a trend
toward the 12-month-old mice being slightly insulin insensitive,
determined by the glucose infusion rate during a 4 mU/kg/min
hyperinsulinemic-euglycemic clamp, which can be used as an
indicator of how responsive the animal is to insulin (52.9 	 7.6 vs
38.9 	 3.8 mg/kg/min; p � 0.13, t � 1.6) (Fig. 4F).

Hyperinsulinemic-euglycemic clamps do not increase
hippocampal insulin signaling but increase ISF and plasma
A� in old APP/PS1 mice
Because no dose-dependent differences were observed between 4
mU/kg/min and 20 mU/kg/min clamps on ISF A� in young APP/
PS1 mice, 4 mU/kg/min hyperinsulinemic-euglycemic clamps
were performed in the 12-month-old APP/PS1 mice to focus on
the effects of physiologically relevant, postprandial levels of hy-
perinsulinemia. Serum insulin was significantly increased �2.6-

Figure 3. Direct delivery of insulin to the hippocampus increases brain insulin and insulin signaling without modulating ISF A�
in young APP/PS1 mice. A, Levels of tissue insulin in the left hippocampus, around the microdialysis probe, collected immediately
after 1 h of insulin treatment or aCSF in controls (n � 7–13 per group). B, Phospho(ser473):total AKT in the left hippocampus
relative to the right hippocampus in each group after 1 h of insulin or aCSF treatment (n � 7–13 per group). C, D, ISF glucose and
lactate in response to insulin or aCSF plotted as a percentage of 8 h of baseline (n � 7–13 per group). E, Hourly ISF A�1-x in
response to insulin or aCSF (gray area) plotted as a percentage of 8 h of baseline, treatment hour in bar graph for comparison (n �
11–24 per group). Open circles represent PBS. Gray squares represent 40 nM. Dark gray diamonds represent 400 nM. Data are
mean 	 SEM. NS, not significant. **p 
 0.01, ***p 
 0.001 (one-way ANOVA with Dunnett’s post test, A–E).
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fold from baseline in the 4 mU clamp
group (p 
 0.001, t � 6.4) and unchanged
in PBS controls (Fig. 5A). There were no
differences in blood glucose as it was held
constant between 90 and 110 mg/dl for
the duration of the clamp (Fig. 5B). ISF
glucose mirrored blood glucose levels,
and no changes in ISF glucose were de-
tected (Fig. 5C). Similar to the findings in
young APP/PS1 mice, there were also no
changes in ISF or serum lactate (Fig.
5D,E). Hyperinsulinemic-euglycemic
clamps did not significantly increase CSF
insulin (Fig. 5F). In these aged animals,
4 mU insulin clamps significantly in-
creased phospho:total AKT in the muscle
as a positive control, similarly to young
mice (Fig. 5G) (1.0 	 0.06 vs 1.6 	 0.14:
p 
 0.01, t � 3.15). Again, there was no
change in phospho:total AKT in the hip-
pocampus (Fig. 5H). ISF A� levels in the
4 mU group increased from baseline
(13.9 	 2.2%), although PBS controls in-
creased slightly from baseline as well
(7.8 	 1.8%). Overall, in aged APP/PS1
mice, ISF A� increased by a modest �6%
for the duration of the clamp when ac-
counting for changes in PBS controls
(p � 0.055, t � 2.1) (Fig. 5I). In addition,
hyperinsulinemia significantly increased
plasma A� compared with PBS controls,
even more so than in ISF (11.9 	 3.6% vs
�1.1 	 2.7%: p 
 0.05, t � 2.3) (Fig. 5J).
Therefore, physiological hyperinsulin-
emia appears to modestly increase ISF and
significantly increase plasma A� in aged
APP/PS1 mice, similar to young APP/PS1
mice, despite no change in hippocampal
insulin signaling. These results point to a
potential peripheral mechanism of hyper-
insulinemia that could potentially modu-
late the net transport of A� between blood
and brain to modulate ISF A� indepen-
dent of neuronal insulin signaling.

Direct delivery of insulin to the
hippocampus increases brain insulin
and insulin signaling without
modulating ISF A� in old APP/PS1
mice
Insulin was delivered directly into the hip-
pocampus via reverse microdialysis in 12-
month-old APP/PS1 mice to determine
the effects on insulin signaling and ISF A�, as well as to determine
whether the aged APP/PS1 brain with significant plaque pathol-
ogy is still sensitive to insulin. Based on the dose–response in
3-month-old mice (Fig. 3A,B), 400 nM insulin was delivered to
the hippocampus because this dose significantly elevated phos-
pho:total AKT in young mice. In 12-month-old mice, tissue in-
sulin levels in control hippocampi were undetectable in 1 of 7
samples (plotted as 10 pg/ml for comparison). Similar to young
APP/PS1 mice, tissue insulin was significantly increased with in-
sulin treatment (�40-fold: p 
 0.001, t � 4.8) (Fig. 6A). Phos-

pho:total AKT was measured in the ipsilateral, injected
hippocampus relative to the contralateral hippocampus to con-
trol for any changes the probe might have on intracellular signal-
ing. A significant increase in phospho:total AKT in response to
400 nM insulin was observed compared with control mice (p 

0.001, t � 6.9: 1.23 	 0.05 vs 2.12 	 0.13) (Fig. 6B), which is a
slightly larger response compared with 3-month-old mice (Fig.
3B). Again, the presence of a probe led to a small increase in
p-AKT in the ipsilateral hippocampus compared with the con-
tralateral for controls, but this was minor compared with the

Figure 4. Changes in amyloid pathology, glucose levels, and insulin sensitivity with age in APP/PS1 mice. A, Representative
images of A� plaque staining in brain slices from 3- and 12-month-old APP/PS1 mice. B, Quantification of A� staining: 3-month-
old had zero reactivity; therefore, statistics could not be run (n � 5 per group). C, Fasting blood glucose levels measured at baseline
before clamps in 3- and 12-month-old APP/PS1 mice (n�15–21 per group). D, Average ISF glucose during 8 h of baseline in 3- and
12-month-old APP/PS1 mice (n � 14 –19 per group). E, Fasted serum insulin measured at baseline before clamps in 3- and
12-month-old APP/PS1 mice (n � 15–21 per group). F, Average glucose infusion rate during a 4 mU hyperinsulinemic-euglycemic
clamp in 3- and 12-month-old APP/PS1 mice, an indicator of insulin sensitivity (n � 7 per group). Data are mean 	 SEM. NS, not
significant. *p 
 0.05, ***p 
 0.001 (unpaired, two-tailed t test, C–F ).
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change with insulin (controls: 1.0 	 0.02 vs 1.23 	 0.05, p 

0.05; 400 nM: 1.0 	 0.06 vs 2.12 	 0.13, p 
 0.001). This
suggests that the hippocampus is not insulin resistant in the
presence of significant amyloid pathology. To confirm that the
presence of amyloid plaques did not affect brain insulin sen-
sitivity, we repeated this experiment in age-matched wild-type
(WT) mice and found a significant, equivalent increase in
p-AKT in response to 400 nM insulin ( p 
 0.001, t � 7.8:
1.32 	 0.07 vs 2.07 	 0.07) (Fig. 6C). Despite high tissue
insulin and insulin signaling, there was no change in ISF glu-
cose or lactate in response to insulin (Fig. 6 D, E). There was
also no increase in ISF A� in response to the hippocampal
insulin infusion (Fig. 6F ). These results suggest that the pres-
ence of amyloid pathology does not influence the ability of
insulin to increase IR signaling, contribute to insulin-
dependent glucose uptake, or modulate A�. Comparing pe-
ripheral to central high insulin in aged APP/PS1 mice, these
data again suggest that the subtle increase in ISF A�

with peripheral clamps is independent of CNS neuronal IR
signaling.

Phospho:total AKT is conventionally measured by Western blot;
but in the above experiments, we used a commercially available
ELISA kit, which offered a platform for higher throughput, reduced
variability, higher sensitivity, and more quantitative results. To con-
firm that this ELISA agrees with the conventional method of West-
ern blot, we measured phospho:total AKT in the same samples by
Western blot and ELISA in 12-month-old WT mice in response to
400 nM insulin or aCSF as a control. Both methods detected a signif-
icant increase in p-AKT with insulin to the same degree (both p 

0.01:1 	 0.05 vs 1.5 	 0.05 by ELISA (t � 4.4), 1 	 0.04 vs 1.4 	 0.14
by Western (t � 3.5) (Fig. 6G). This confirms our method and vali-
dates the reported p-AKT data.

Discussion
The goal of the studies described herein was twofold. First, we
sought to elucidate the effects of systemic, physiological hyperin-

Figure 5. Hyperinsulinemic-euglycemic clamps do not increase hippocampal insulin signaling but increase ISF and plasma A� in old APP/PS1 mice. A, Serum insulin levels at fasted baseline
(solid) and during hyperinsulinemic-euglycemic or PBS clamps (striped) (n � 7 per group). B, Blood glucose levels at fasted baseline and average during the clamps: blood glucose was clamped
between 90 and 110 mg/dl at euglycemic levels throughout the clamps to ensure that there were no changes between baseline and clamp in any condition (n � 7 per group). C, ISF glucose levels
during the clamps (n � 6 or 7 per group). D, ISF lactate during the clamps as a percentage of 8 h of baseline (n � 6 or 7 per group). E, Serum lactate levels during the clamps (n � 4 or 5 per group).
F, CSF insulin in samples collected immediately after 1–1.5 h of clamp (n � 7–9 per group). G, H, Phospho(ser473):total AKT in leg muscle and hippocampus collected after 1 h of 4 mU or PBS clamp.
Normalized to PBS controls (n � 7–9 per group). I, Hourly ISF A�1-X measurements during 8 h of baseline, 4 h of clamp, and 8 h after clamp plotted as percentage change from baseline. Open circles
represent PBS. Gray squares represent 4 mU. Average ISF A�1-X during the 4 h clamp was used to compare the effect of hyperinsulinemia on ISF A�1-x compared with PBS controls (n � 7 per group).
J, Plasma A�1-X plotted as percentage change from baseline. Baseline samples were collected after fasting and clamp samples collected 1 h into clamp (n � 5– 8 per group). Data are mean 	 SEM.
NS, not significant. *p 
 0.05, **p 
 0.01, ***p 
 0.001 (two-way ANOVA with Bonferroni post test, A, B; or unpaired, two-tailed t test, C–J ).
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sulinemia on insulin levels and insulin signaling in the brain of
awake, behaving mice. Questions remain regarding the transport
of insulin across the BBB and how systemic changes in blood
insulin levels affect neuronal insulin signaling. By combining
hyperinsulinemic-euglycemic clamps with hippocampal micro-
dialysis in vivo, we are able to directly investigate how peripheral
changes in metabolism dynamically alter metabolites within the
brain ISF. Second, we investigated whether high levels of periph-
eral and CNS-administered insulin could affect ISF A� levels and
shed light on the complex relationship between insulin and AD.
Although widely studied, the roles of insulin as both a patholog-
ical molecule and potential therapeutic in AD still remain poorly
understood. Combining clamps and in vivo microdialysis, we
have the ability to investigate the dynamic effects of insulin on
molecules relevant to the pathogenesis of AD, such as A�. These
experiments found that peripherally high insulin does not acutely
increase insulin levels or insulin signaling within the brain,
whereas direct administration of insulin into the hippocampus
increases insulin levels and insulin signaling, even in the presence
of amyloid plaques. As it relates to A�, peripheral hyperinsulin-
emia modestly increased ISF A�, whereas central administration
did not. Peripheral hyperinsulinemia also significantly increased
plasma A� to a greater extent than in the ISF, pointing to a
possible mechanism that can influence the net transport of A�

between blood and brain to modulate ISF A� without changing
neuronal IR signaling. Our results suggest a novel disconnect
between neuronal IR signaling and extracellular A� levels in vivo,
contrary to previous studies in vitro (Gasparini et al., 2001). Re-
sults are summarized in Table 1.

Elucidating the complete mechanism behind the modest in-
crease in ISF A� with peripheral hyperinsulinemia using in vivo
techniques is difficult, but we have demonstrated that the mech-
anism is independent of CNS neuronal IR signaling and IDE
activity in the hippocampus. The simultaneous increase in

Table 1. Summary of the effects of peripheral and central high insulin on
hippocampal IR signaling and ISF A� in young and old APP/PS1 micea

Hippocampal IR signaling Hippocampal ISF A�

Peripheral high insulin: 4 mU/kg/min
3 months old No change 1 9% versus controls
12 months old No change 1 6% versus controls

CNS high insulin: 400 nM

3 months old 1 50% versus controls No change
12 months old 1 70% versus controls No change

aComparing postprandial (4 mU/kg/min) peripheral hyperinsulinemia and hippocampal infusion of insulin (400 nM)
on hippocampal IR signaling and ISF A� demonstrates a novel disconnect between neuronal IR signaling and
extracellular A�. The overall relationship between peripheral and central insulin, signaling, and A� does not differ
in the presence of significant amyloid pathology.

Figure 6. Direct delivery of insulin to the hippocampus increases brain insulin and insulin signaling without modulating ISF A� in old APP/PS1 mice. A, Levels of tissue insulin in the left
hippocampus, around the microdialysis probe, collected immediately after 1 h of insulin treatment or aCSF in controls (n � 7 per group). B, Phospho(ser473):total AKT in the left hippocampus
relative to the right hippocampus in each group after 1 h of insulin or aCSF treatment in APP/PS1 mice (n � 9 or 10 per group). C, Phospho(ser473):total AKT in the left hippocampus relative to the
right hippocampus in each group after 1 h of insulin or aCSF treatment in age-matched wild-type mice (n � 4 per group). D, E, ISF glucose and lactate in response to insulin or aCSF plotted as a
percentage of 8 h of baseline (n �7–10 per group). F, Hourly ISF A�1-x in response to insulin or aCSF (gray area) plotted as a percentage of 8 h of baseline, treatment hour in bar graph for comparison
(n � 9 –11 per group). Open circles represent PBS. Dark gray diamonds represent 400 nM. G, Phospho:total AKT Western blot (WB) from hippocampal lysates of 12-month-old WT mice receiving 400
nM insulin or aCSF via reverse microdialysis. Data are quantified in the graph on the right (WB) and compared with the same samples quantified by AKT ELISA (n � 4 per group). Data are mean 	
SEM. NS, not significant. **p 
 0.01, ***p 
 0.001 (unpaired, two-tailed t test, A–F; or two-way ANOVA with Bonferroni post test, G).
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plasma A�, along with the fact that we could not detect any
changes in CNS insulin or insulin signaling, suggests that high
blood insulin may be acting peripherally to modulate A� levels
and its net transport across the BBB. Plasma A� has been shown
to increase CNS A� (Maness et al., 1994; Martel et al., 1996;
Deane et al., 2003) and potentially have a significant impact on
the development of brain amyloid pathology (DeMattos et al.,
2001). It is also possible that an unidentified, peripheral molecule
could change in response to peripheral hyperinsulinemia and
affect A� levels by crossing the BBB to act directly on brain tissue,
affect the BBB transport of A� without crossing into the CNS,
or affect cells in the brain to modify glymphatic clearance (Xie et
al., 2013) to ultimately alter A� levels. Because we found no
change in ISF lactate in response to peripheral hyperinsulinemia,
we can conclude that the mechanism is also independent of in-
creased neuronal activity: a phenomenon that increases both lac-
tate and A� in ISF (Bero et al., 2011). Therefore, the mechanism
behind the increase in A� with high blood insulin is independent
of neuronal IR signaling, hippocampal IDE degradation, and
neuronal activity but appears to alter the net flux of A� across the
BBB.

Our findings are of interest since we previously demonstrated
that hyperglycemic clamps increase ISF A� using similar meth-
odologies (Macauley et al., 2015). Hyperglycemia, another key
feature of T2D, may negatively affect the brain and impact A�
pathology even more than insulin. We reported that doubling
blood and ISF glucose with hyperglycemic clamps significantly
increased ISF A� �27% in young and �40% in aged APP/PS1
mice (Macauley et al., 2015). In these experiments, insulin was
also increased threefold in response to the hyperglycemia, so the
current experiments delineate the specific role of blood insulin in
modulating ISF A� and shows that insulin does contribute to the
increase in A�, although to a lesser extent than glucose. In pa-
tients with T2D, these pathologies overlap temporally and over
years of prediabetes and T2D, high blood glucose and insulin
likely influence the onset or progression of AD by modulating A�
levels in the brain ISF and plasma. We previously saw an exagger-
ated response in ISF A� to hyperglycemia in aged mice with
significant amyloid pathology (Macauley et al., 2015). Here, we
report new found differences at baseline in blood and ISF glucose
between young and aged APP/PS1 mice that correspond with
changes in lactate that we previously reported (Harris et al.,
2016). Conversely, there was no baseline difference in blood in-
sulin levels, which may explain why we saw an exaggerated re-
sponse to hyperglycemia in aged mice but a similar response to
insulin. One explanation for why blood glucose has a more robust
effect on ISF A� than blood insulin is that glucose readily crosses
the BBB through highly abundant glucose transporter 1 to mirror
the level of glucose in the blood and act directly on brain cells,
modulating neuronal activity (Macauley et al., 2015). Insulin
crosses the BBB through a limited number of IRs on endothelial
cells (Zuchero et al., 2016) with saturation at physiological levels,
and we found no evidence of increased CNS insulin in response
to peripherally high insulin. In summary, we have now shown
that both high blood glucose and insulin can independently ele-
vate ISF A� levels and potentially link T2D and AD through
distinct mechanisms.

The only experiments to date detecting a significant increase
in brain IR signaling in response to peripherally high insulin use
a protocol where mice are injected with extreme, supraphysi-
ological insulin, directly into the vena cava after overnight fast
while under anesthesia (Clodfelder-Miller et al., 2005; Freude et
al., 2005; Dummler et al., 2006; Sartorius et al., 2015; Sajan et al.,

2016). Even under these extreme conditions, the change in IR
signaling, such as p-AKT, is relatively unchanged compared with
peripheral tissues (Dummler et al., 2006). Overnight fasting, be-
cause mice are nocturnal, reduces blood insulin and glucose sig-
nificantly more than an acute fast, and reduces fat and muscle
content and hepatic glycogen (Ayala et al., 2006). An overnight
fast also reduces p-AKT in the hippocampus and cortex of mice
(Clodfelder-Miller et al., 2005). Thus, the only way to detect an
increase in brain IR signaling with peripherally high insulin
seems to be after basal signaling is reduced and extreme insulin
injections are used. Our experiments are crucial to understanding
the role of physiological changes in blood insulin on the brain,
finding that postprandial hyperinsulinemia, after 4 –5 h of fasting
in awake, behaving animals did not change brain IR signaling
or insulin levels. Our acute experiments could not detect a change
in insulin transportation, but with chronic, physiological altera-
tions seen with T2D, AD, obesity, or aging, there may be altered
transport of insulin from blood to CNS (Fujisawa et al., 1991;
Craft et al., 1998; Banks, 2004; Sartorius et al., 2015; Sajan et al.,
2016).

Another important finding is related to the idea that the brain
becomes insulin-resistant in AD due to toxic A� species. By de-
livering insulin directly into the hippocampus and measuring
insulin signaling, we were able to demonstrate in vivo that a brain
with significant amounts of endogenous A� monomers, aggre-
gates, and amyloid plaques is still responsive to insulin. Aged
APP/PS1 mice reportedly have high levels of p(ser)-IRS1, a spe-
cific component of the IR signaling cascade that correlates with
insulin resistance (Bomfim et al., 2012). Postmortem brains from
AD patients have higher levels of p(ser)-IRS1 and reduced ex vivo
insulin stimulation compared with controls (Moloney et al.,
2010; Bomfim et al., 2012; Talbot et al., 2012; Yarchoan et al.,
2014). Moreover, neuronal insulin resistance is thought to be due
to the presence of A�, particularly A� oligomers (Zhao et al.,
2008; De Felice et al., 2009; Bomfim et al., 2012). Although
p(ser)-IRS1 was not measured directly in our studies, our results
show that the aged, APP/PS1 mouse brain is equally responsive to
insulin as a wild-type mouse with no plaques and as a young
APP/PS1 mouse before amyloid plaque deposition. If intranasal
insulin is improving memory by increasing insulin signaling,
these results suggest that a brain with A� aggregates could still
respond positively to treatment.

Overall, we were able to show that acute, peripheral hyperin-
sulinemia increases plasma and ISF A� in both young and old
APP/PS1 mice, likely through a peripheral mechanism, indepen-
dent of neuronal insulin signaling, IDE degradation, and neuro-
nal activity in the hippocampus. These results shed light on the
causal relationship between peripheral hyperinsulinemia, a key
feature of T2D, and A� pathology in AD pathogenesis. In addi-
tion, we found that direct delivery of insulin to the hippocampus
increased neuronal insulin signaling, even in the presence of am-
yloid plaques, but did not have any effect on ISF A� levels. These
results support the potential use of intranasal insulin as an AD
therapeutic and highlight how modulating insulin levels in the
brain specifically, compared with the blood, can have differential
effects on extracellular A� in the brain.
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