1,673 research outputs found

    Investigating investment in biopharmaceutical R&D

    Get PDF
    Recent studies have highlighted a reduction in projected financial returns associated with biopharmaceutical R&D, owing to decreased productivity, increases in costs and flattening revenue per new drug, prompting calls for dramatic revisions to R&D models. On the basis of previous financial modelling, the simplest hypothesis would be that new investment in such R&D should be minimal and focused on biologics in preference to small molecules, as the internal rate of return on investment for biologics projects has been reported to be higher (Nat. Rev. Drug Discov. 8, 609–610; 2009). We sought to discern how investors have been acting in recent years, and so examined investment trends in nascent public biopharmaceutical companies located in the United States by constructing a database of such companies that had US initial public offerings (IPOs) between 2010 and 2014 (see Supplementary information S1 (box) for details). We then analysed the characteristics of the 113 companies that met our inclusion criteria, including their corporate strategy and therapeutic modality focus. Here, we present the key findings from this analysis and discuss its implications based on our own financial modelling.United States. National Institutes of Health (NIANIH/R01AG043560

    A Survey of Merger Remnants II: The Emerging Kinematic and Photometric Correlations

    Full text link
    This paper is the second in a series exploring the properties of 51 {\it optically} selected, single-nuclei merger remnants. Spectroscopic data have been obtained for a sub-sample of 38 mergers and combined with previously obtained infrared photometry to test whether mergers exhibit the same correlations as elliptical galaxies among parameters such as stellar luminosity and distribution, central stellar velocity dispersion (σ\sigma_{\circ}), and metallicity. Paramount to the study is to test whether mergers lie on the Fundamental Plane. Measurements of σ\sigma_{\circ} have been made using the Ca triplet absorption line at 8500 {\AA} for all 38 mergers in the sub-sample. Additional measurements of σ\sigma_{\circ} were made for two of the mergers in the sub-sample using the CO absorption line at 2.29 \micron. The results indicate that mergers show a strong correlation among the parameters of the Fundamental Plane but fail to show a strong correlation between σ\sigma_{\circ} and metallicity (Mg2_{2}). In contrast to earlier studies, the σ\sigma_{\circ} of the mergers are consistent with objects which lie somewhere between intermediate-mass and luminous giant elliptical galaxies. However, the discrepancies with earlier studies appears to correlate with whether the Ca triplet or CO absorption lines are used to derive σ\sigma_{\circ}, with the latter almost always producing smaller values. Finally, the photometric and kinematic data are used to demonstrate for the first time that the central phase-space density of mergers are equivalent to elliptical galaxies. This resolves a long-standing criticism of the merger hypothesis.Comment: Accepted Astronomical Journal (to appear in January 2006

    Sexual reproduction of human fungal pathogens

    Get PDF
    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms

    Mediating and Moderating Effects of Iron Homeostasis Alterations on Fetal Alcohol-Related Growth and Neurobehavioral Deficits

    Get PDF
    We have previously demonstrated prenatal alcohol exposure (PAE)-related alterations in maternal and infant iron homeostasis. Given that early iron deficiency and PAE both lead to growth restriction and deficits in recognition memory and processing speed, we hypothesized that PAE-related iron homeostasis alterations may mediate and/or moderate effects of PAE on growth and neurobehavior. We examined this hypothesis in a prenatally recruited, prospective longitudinal birth cohort [87 mother-infant pairs with heavy prenatal alcohol exposure (mean = 7.2 drinks/occasion on 1.4 days/week); 71 controls], with serial growth measures and infant neurobehavioral assessments. PAE was related to growth restriction at 2 weeks and 5 years, and, in infancy, poorer visual recognition memory, slower processing speed, lower complexity of symbolic play, and higher emotionality and shyness on a parental report temperament scale. Lower maternal hemoglobin-to-log(ferritin) ratio, which we have shown to be associated with PAE, appeared to exacerbate PAE-related 2-week head circumference reductions, and elevated maternal ferritin, which we have shown to be associated with PAE, appeared to exacerbate PAE-related visual recognition memory deficits. In causal inference analyses, PAE-related elevations in maternal ferritin and hemoglobin:log(ferritin) appeared to statistically mediate 22.6–82.3% of PAE-related growth restriction. These findings support potential mechanistic roles of iron homeostasis alterations in fetal alcohol spectrum disorders (FASD)

    Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells.

    Get PDF
    Repurposed CRISPR-Cas molecules provide a useful tool set for broad applications of genomic editing and regulation of gene expression in prokaryotes and eukaryotes. Recent discovery of phage-derived proteins, anti-CRISPRs, which serve to abrogate natural CRISPR anti-phage activity, potentially expands the ability to build synthetic CRISPR-mediated circuits. Here, we characterize a panel of anti-CRISPR molecules for expanded applications to counteract CRISPR-mediated gene activation and repression of reporter and endogenous genes in various cell types. We demonstrate that cells pre-engineered with anti-CRISPR molecules become resistant to gene editing, thus providing a means to generate "write-protected" cells that prevent future gene editing. We further show that anti-CRISPRs can be used to control CRISPR-based gene regulation circuits, including implementation of a pulse generator circuit in mammalian cells. Our work suggests that anti-CRISPR proteins should serve as widely applicable tools for synthetic systems regulating the behavior of eukaryotic cells

    First Reported Case of Cryptococcus gattii in the Southeastern USA: Implications for Travel-Associated Acquisition of an Emerging Pathogen

    Get PDF
    In 2007, the first confirmed case of Cryptococcus gattii was reported in the state of North Carolina, USA. An otherwise healthy HIV negative male patient presented with a large upper thigh cryptococcoma in February, which was surgically removed and the patient was started on long-term high-dose fluconazole treatment. In May of 2007, the patient presented to the Duke University hospital emergency room with seizures. Magnetic resonance imaging revealed two large CNS lesions found to be cryptococcomas based on brain biopsy. Prior chest CT imaging had revealed small lung nodules indicating that C. gattii spores or desiccated yeast were likely inhaled into the lungs and dissemination occurred to both the leg and CNS. The patient's travel history included a visit throughout the San Francisco, CA region in September through October of 2006, consistent with acquisition during this time period. Cultures from both the leg and brain biopsies were subjected to analysis. Based on phenotypic and molecular methods, both isolates were C. gattii, VGI molecular type, and distinct from the Vancouver Island outbreak isolates. Based on multilocus sequence typing of coding and noncoding regions and virulence in a heterologous host model, the leg and brain isolates are identical, but the two differed in mating fertility. Two clinical isolates, one from a transplant recipient in San Francisco and the other from Australia, were identical to the North Carolina clinical isolate at all markers tested. Closely related isolates that differ at only one or a few noncoding markers are present in the Australian environment. Taken together, these findings support a model in which C. gattii VGI was transferred from Australia to California, possibly though an association with its common host plant E. camaldulensis, and the patient was exposed in San Francisco and returned to present with disease in North Carolina

    The orbit structure of Dynkin curves

    Full text link
    Let G be a simple algebraic group over an algebraically closed field k; assume that Char k is zero or good for G. Let \cB be the variety of Borel subgroups of G and let e in Lie G be nilpotent. There is a natural action of the centralizer C_G(e) of e in G on the Springer fibre \cB_e = {B' in \cB | e in Lie B'} associated to e. In this paper we consider the case, where e lies in the subregular nilpotent orbit; in this case \cB_e is a Dynkin curve. We give a complete description of the C_G(e)-orbits in \cB_e. In particular, we classify the irreducible components of \cB_e on which C_G(e) acts with finitely many orbits. In an application we obtain a classification of all subregular orbital varieties admitting a finite number of B-orbits for B a fixed Borel subgroup of G.Comment: 12 pages, to appear in Math

    Using Indium-111 labeled radiopharmaceuticals to target the BB2 receptor on human prostate cancer cells [abstract]

    Get PDF
    Abstract only availableThe BB2 receptor, belonging to the Bombesin receptor family, has been shown to be highly over expressed in a variety of cancer cell lines, including human prostate cancer. Our laboratory have been involved, for over a decade, in synthesizing Bombesin analogues that target the BB2 receptor for the purpose of developing radiopharmaceuticals for diagnostic and/or therapeutic treatment of cancer. Radiopharmaceuticals based on Bombesin are typically composed of a chelator, isotope, linking group and targeting vector [See Bifunctional Conjugate Design [figure below]. Previous studies by our group and others have shown that variations in linking groups affect the retention time of the bifunctional conjugate in prostate cancer (PC-3) cells. Higher retention time allows for more efficacious therapeutic benefits and enhanced diagnostic imaging capabilities. In this study, we seek to determine the pharmacokinetic benefits achieved in altering the linking group using aliphatic and aromatic linking groups. In-vitro analysis of the radiopharmaceuticals studied found that the Bombesin derivative with the aliphatic linking group demonstrated a slightly higher affinity for the BB2 receptor compared to the Bombesin analogs containing aromatic linking groups. In vivo pharmacokinetic and imaging studies were performed using pre-clinical models of prostate cancer. The tumor uptake of the Bombesin derivatives with the aromatic linking groups were found to be significantly higher compared to that of the Bombesin derivative with the aliphatic linking group. In contrast, the aromatic Bombesin analogs also exhibited higher amounts of undesirable accumulation in the kidneys and other non-target tissues. In conclusion, we found that the aliphatic compounds were more appropriate for diagnostic imaging of prostate cancer due to the reduced non-target retention. The Bombesin analogs with aromatic linking groups showed potential for use as therapeutic agents for prostate cancer treatment.National Institutes of Health Molecular Imaging Progra

    No patient left behind : The promise of immune priming with epigenetic agents

    Get PDF
    Checkpoint inhibitors, monoclonal antibodies that inhibit PD-1 or CTLA-4, have revolutionized the treatment of multiple cancers. Despite the enthusiasm for the clinical successes of checkpoint inhibitors, and immunotherapy, in general, only a minority of patients with specific tumor types actually benefit from treatment. Emerging evidence implicates epigenetic alterations as a mechanism of clinical resistance to immunotherapy. This review presents evidence for that association, summarizes the epi-based mechanisms by which tumors evade immunogenic cell death, discusses epigenetic modulation as a component of an integrated strategy to boost anticancer T cell effector function in relation to a tumor immunosuppression cycle and, finally, makes the case that the success of this no-patient-left-behind strategy critically depends on the toxicity profile of the epigenetic agent(s).Peer reviewe

    Targeting the BB2 receptor on human prostate cancer cells using Indium-111 labeled radiopharmaceutical [abstract]

    Get PDF
    Abstract only availableFaculty Mentor: Dr. Timothy Hoffman, Internal MedicineThe BB2 receptor, belonging to the Bombesin receptor family, has been shown to be highly over expressed in a variety of cancer cell lines, including human prostate cancer. Over expression of the BB2 receptor offers an appealing target for the design of targeted radiopharmaceuticals.  The Hoffman laboratory and others have been involved, for over a decade, in synthesizing Bombesin analogues that target the BB2 receptor for the purpose of developing a viable radiopharmaceutical for diagnostic or therapeutic treatment of cancer. Radiopharmaceuticals based on Bombesin analogues are typically composed of a targeting vector, radioisotope, chelator and linking group [See Bifunctional Conjugate Design figure below]. Previous studies have shown that variations in linking groups may affect the retention time of the bifunctional conjugate in prostate cancer (PC-3) cells.  Higher retention time allows for more efficacious therapeutic benefits and enhanced diagnostic imaging capabilities.  In the work presented, we designed and synthesized a 111In-Bombesin analogue with a phenyl linker group in order to determine if the phenyl linker group would provide higher retention times in prostate cancer.  In-vitro analysis of the radiopharmaceutical was performed using PC-3 cells to determine the affinity of the new compound for the BB2 receptor to be 1.09 nM. In-vivo studies of the radiopharmaceutical were also conducted by injection of the radiopharmaceutical into CF-1 (“normal”) mice, as well as SCID (Severe Combined Immunodeficient) mice bearing 2-3 week old PC-3 tumors. Experimental results on SCID mice revealed uptakes of 6.36, 3.34, 2.42 and 1.69 % Injected Dose of radiopharmaceutical per gram of tumor tissue at 0.25, 1, 4 and 24 hours, respectively. Imaging using Micro-SPECT (Single-Photon Emission Computed Tomography) was performed to track the dispersion of the radiopharmaceutical throughout the mouse model and confirmed the targeted uptake of the radiopharmaceutical
    corecore