29 research outputs found

    Human Milk Protein Production in Xenografts of Genetically Engineered Bovine Mammary Epithelial Stem Cells

    Get PDF
    BACKGROUND: In the bovine species milk production is well known to correlate with mammary tissue mass. However, most advances in optimizing milk production relied on improvements of breeding and husbandry practices. A better understanding of the cells that generate bovine mammary tissue could facilitate important advances in milk production and have global economic impact. With this possibility in mind, we show that a mammary stem cell population can be functionally identified and isolated from the bovine mammary gland. We also demonstrate that this stem cell population may be a promising target for manipulating the composition of cow's milk using gene transfer. METHODS AND FINDINGS: We show that the in vitro colony-forming cell assay for detecting normal primitive bipotent and lineage-restricted human mammary clonogenic progenitors are applicable to bovine mammary cells. Similarly, the ability of normal human mammary stem cells to regenerate functional bilayered structures in collagen gels placed under the kidney capsule of immunodeficient mice is shared by a subset of bovine mammary cells that lack aldehyde dehydrogenase activity. We also find that this activity is a distinguishing feature of luminal-restricted bovine progenitors. The regenerated structures recapitulate the organization of bovine mammary tissue, and milk could be readily detected in these structures when they were assessed by immunohistochemical analysis. Transplantation of the bovine cells transduced with a lentivirus encoding human ÎČ-CASEIN led to expression of the transgene and secretion of the product by their progeny regenerated in vivo. CONCLUSIONS: These findings point to a common developmental hierarchy shared by human and bovine mammary glands, providing strong evidence of common mechanisms regulating the maintenance and differentiation of mammary stem cells from both species. These results highlight the potential of novel engineering and transplant strategies for a variety of commercial applications including the production of modified milk components for human consumption

    PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar

    Full text link
    (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 Ό\mum. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR, the atomic PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extract five template spectra to represent the morphology and environment of the Orion Bar PDR. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. While the spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 Ό\mum, a wealth of weaker features and sub-components are present. We report trends in the widths and relative strengths of AIBs across the five template spectra. These trends yield valuable insight into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 Ό\mum AIB emission from class B11.2_{11.2} in the molecular PDR to class A11.2_{11.2} in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a "weeding out" of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    PDRs4All II: JWST's NIR and MIR imaging view of the Orion Nebula

    Full text link
    The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of 0.1-1" (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. A complex, structured, and folded DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate

    Supplementary Material. DOLFINx: The next generation FEniCS problem solving environment.

    No full text
    <p>Supplementary material for the paper "DOLFINx: The next generation FEniCS problem solving environment".</p> <p>The snippets from the paper are licensed under the MIT License.</p> <p>The FEniCSx component source code is licensed according to the licenses included in the .tar.gz file.</p> <p>The Docker image contains compiled software, including the FEniCSx components, under a number of different open source licenses.</p&gt

    DOLFINx: The next generation FEniCS problem solving environment

    Get PDF
    DOLFINx is the next generation problem solving environment from the FEniCS Project; it provides an expressive and performant environment for solving partial differential equations using the finite element method. We present the modern design principles that underpin the DOLFINx library, and describe approaches used in DOLFINx that preserve the high level of mathematical abstraction associated with FEniCS Project libraries, yet support extensibility and specialized customization. At the core of DOLFINx is a data- and function-oriented design, in contrast with the object-oriented design of more traditional libraries. We argue that this novel design approach leads to a compact and maintainable library, which is flexible in use and makes possible the creation of high performance programs in different languages.Preprin

    Multiorganizational consensus to define guiding principles for perioperative pain management in patients with chronic pain, preoperative opioid tolerance, or substance use disorder

    No full text
    Significant knowledge gaps exist in the perioperative pain management of patients with a history of chronic pain, substance use disorder, and/or opioid tolerance as highlighted in the US Health and Human Services Pain Management Best Practices Inter-Agency Task Force 2019 report. The report emphasized the challenges of caring for these populations and the need for multidisciplinary care and a comprehensive approach. Such care requires stakeholder alignment across multiple specialties and care settings. With the intention of codifying this alignment into a reliable and efficient processes, a consortium of 15 professional healthcare societies was convened in a year-long modified Delphi consensus process and summit. This process produced seven guiding principles for the perioperative care of patients with chronic pain, substance use disorder, and/or preoperative opioid tolerance. These principles provide a framework and direction for future improvement in the optimization and care of \u27complex\u27 patients as they undergo surgical procedures

    Hydrogenation of Dimethyl Carbonate to Methanol by trans

    No full text
    corecore