225 research outputs found

    How many upper Eocene microspherule layers: More than we thought

    Get PDF
    The scientific controversy over the origin of upper Eocene tektites, microtektites and other microspherules cannot be logically resolved until it is determined just how many events are involved. The microspherule-bearing beds in marine sediments have been dated using standard biozonal techniques. Although a powerful stratigraphic tool, zonal biostratigraph has its limitations. One is that if an event, such as a microspherule occurrence, is observed to occur in a zone at one locality and then a similar event observed in the same zone at another locality, it still may be unwarranted to conclude that these events exactly correlate. To be in a zone a sample only need be between the fossil events that define the zone boundaries. It is often very difficult to accurately determine where within a zone one might be. Further, the zone defining events do not everywhere occur at the same points in time. That is, the ranges of the defining taxa are not always filled. Thus, the length of time represented by a zone (but not, of course, its chronozone) can vary from place to place. These problems can be offset by use of chronostratigraphic modelling techniques such as Graphic Correlation. This technique was used to build a Cretaceous and Cenozoic model containing fossil, magnetopolarity, and other events. The scale of the model can be demonstrated to be linear with time. This model was used to determine the chronostratigraphic position of upper Eocene microspherule layers

    Linking morphodynamic response with sediment mass balance on the Colorado River in Marble Canyon: Issues of scale, geomorphic setting, and sampling design

    Get PDF
    Measurements of morphologic change are often used to infer sediment mass balance. Such measurements may, however, result in gross errors when morphologic changes over short reaches are extrapolated to predict changes in sediment mass balance for long river segments. This issue is investigated by examination of morphologic change and sediment influx and efflux for a 100 km segment of the Colorado River in Grand Canyon, Arizona. For each of four monitoring intervals within a 7 year study period, the direction of sand-storage response within short morphologic monitoring reaches was consistent with the flux-based sand mass balance. Both budgeting methods indicate that sand storage was stable or increased during the 7 year period. Extrapolation of the morphologic measurements outside the monitoring reaches does not, however, provide a reasonable estimate of the magnitude of sand-storage change for the 100 km study area. Extrapolation results in large errors, because there is large local variation in site behavior driven by interactions between the flow and local bed topography. During the same flow regime and reach-average sediment supply, some locations accumulate sand while others evacuate sand. The interaction of local hydraulics with local channel geometry exerts more control on local morphodynamic response than sand supply over an encompassing river segment. Changes in the upstream supply of sand modify bed responses but typically do not completely offset the effect of local hydraulics. Thus, accurate sediment budgets for long river segments inferred from reach-scale morphologic measurements must incorporate the effect of local hydraulics in a sampling design or avoid extrapolation altogether

    Starch Yield Based on Physical Dimensions and Age of Sago Palm: A Mathematical Model

    Get PDF
    This study employed firefly algorithm (FA) to generate a mathematical model of sago palm’s potential starch yield based on the physical dimensions, namely, diameter breast height (DBH), palm height, and age. Three environmental conditions (i.e., dry, wet, and submerged) were taken into consideration in the modelling process using the general linear and nonlinear models. Moreover, the resulting models were assessed using sum of squared residuals (SSR) as FA’s fitness function and mean absolute percentage error (MAPE) for the models’ accuracy. Results show that general linear models are the best fit models for the sago palms growing in the three different environmental conditions with respect to the considered parameters. These models were used to quantitatively describe the underlying relationships between the starch yield with respect to the physical dimensions and age in order to determine the maximum potential starch yield of sago palm for the different environmental conditions. The models estimate that the maximum potential starch yield for dry, wet, and submerged environmental conditions are as follows: 0.75 m, 0.35 m, and 0.75 m for DBH, respectively; 10.5 m for palm height for all three; and 11.5 years, 15.5 years, and 15.5 years for age, respectively. These results will be able to aid farmers and potential investors in maximizing their sago starch produce. This will also help them as a guide for identifying harvestable sago palms which can be incorporated in their harvest plan

    Sago Palm Flour Weight in Different Environmental Conditions: A Mathematical Model

    Get PDF
    For the past decades, the demand for starch from the sago palm (Metroxylon sagu Rottb.) from the starch industry is increasing because of the palm’s high starch yield and low cost of production. This study presented a model which illustrates the relationship of sago palm flour weight with respect to its age depending on sago palm environmental condition (i.e., dry, wet, or submerged). Five different growth models were considered in this study, namely, the quadratic, cubic, quartic, power, and logarithmic models, which were ran using a metaheuristic approach, specifically genetic algorithm (GA), in order to estimate the weights associated with the independent variable age and to generate an estimate for the dependent variable flour weight. GA performance was measured using sum of squared residuals (SSR) as the fitness function while the accuracy of the models were measured using the mean absolute percentage error (MAPE). The results show that the best fit model models for dry, wet, and submerged environmental conditions are cubic, cubic, and quartic models, respectively. The best fit models generated SSR values closer to the tolerance value of 0.000001 and have MAPE values of 2.820, 1.366, and 4.316, respectively, which indicate high accuracy. These models will help aide potential investors or land owners to identify the maximum potential starch yield of sago palm in areas where data with respect to growth stages are only available

    Where are the beachmasters? Unexpectedly weak polygyny among southern elephant seals on a South Shetland Island

    Get PDF
    Intraspecific variation in animal mating systems can have important implications for ecological, evolutionary and demographic processes in wild populations. For example, patterns of mating can impact social structure, dispersal, effective population size and inbreeding. However, few species have been studied in sufficient detail to elucidate mating system plasticity and its dependence on ecological and demographic factors. Southern elephant seals (Mirounga leonina) have long been regarded as a textbook example of a polygynous mating system, with dominant ‘beachmaster’ males controlling harems of up to several hundred females. However, behavioural and genetic studies have uncovered appreciable geographic variation in the strength of polygyny among elephant seal populations. We, therefore, used molecular parentage analysis to investigate patterns of parentage in a small satellite colony of elephant seals at the South Shetland Islands. We hypothesised that dominant males would be able to successfully monopolise the relatively small numbers of females present in the colony, leading to relatively high levels of polygyny. A total of 424 individuals (comprising 33 adult males, 101 adult females and 290 pups) sampled over 8 years were genotyped at 20 microsatellites and reproductive success was analysed by genetically assigning parents. Paternity could only be assigned to 31 pups (10.7%), despite our panel of genetic markers being highly informative and the genotyping error rate being very low. The strength of inferred polygyny was weak in comparison to previous genetic studies of the same species, with the most successful male fathering only seven pups over the entire course of our study. Our results show that, even in a species long regarded as a model for extreme polygyny, male reproductive skew can vary substantially among populations

    Monitoring arroyo erosion of pre-dam river terraces in the Colorado River ecosystem

    Get PDF
    ABSTRACT This study describes changes over a 3.5-year period at four arroyos that drain terraces along the Colorado River in Grand Canyon National Park. Sediment deposited in the arroyo mouths, by the 1996 controlled flood from Glen Canyon Dam, was largely retained during the study period. Lower dam releases, such as the steady flows in 1997, eroded deposits from the terrace margins but did not significantly impact the arroyo systems. Following the 1996 controlled flood, wind deposition lessened or inhibited arroyo-cutting during the study period. The relatively infrequent occurrence of local rainfall and resultant surface flow was not sufficient to downcut the arroyos to the pre-1996 flood condition

    Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for Neurodegenerative Diseases

    Get PDF
    Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic–pituitary–adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine–threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.Fil: de Nicola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Meyer, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Guennoun, Rachida. Inserm; Francia. Université Paris Sud; Francia. Université Paris Saclay; FranciaFil: Schumacher, Michael. Inserm; Francia. Université Paris Sud; Francia. Université Paris Saclay; FranciaFil: Hunt, Hazel. Corcepts Therapeutics; Estados UnidosFil: Belanoff, Joseph. Corcepts Therapeutics; Estados UnidosFil: de Kloet, E. Ronald. Leiden University. Leiden University Medical Center.; Países BajosFil: Gonzalez Deniselle, Maria Claudia. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Mitochondrial Hâ‚‚Oâ‚‚ emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans

    Get PDF
    High dietary fat intake leads to insulin resistance in skeletal muscle, and this represents a major risk factor for type 2 diabetes and cardiovascular disease. Mitochondrial dysfunction and oxidative stress have been implicated in the disease process, but the underlying mechanisms are still unknown. Here we show that in skeletal muscle of both rodents and humans, a diet high in fat increases the Hâ‚‚Oâ‚‚-emitting potential of mitochondria, shifts the cellular redox environment to a more oxidized state, and decreases the redox-buffering capacity in the absence of any change in mitochondrial respiratory function. Furthermore, we show that attenuating mitochondrial Hâ‚‚Oâ‚‚ emission, either by treating rats with a mitochondrial-targeted antioxidant or by genetically engineering the overexpression of catalase in mitochondria of muscle in mice, completely preserves insulin sensitivity despite a high-fat diet. These findings place the etiology of insulin resistance in the context of mitochondrial bioenergetics by demonstrating that mitochondrial Hâ‚‚Oâ‚‚ emission serves as both a gauge of energy balance and a regulator of cellular redox environment, linking intracellular metabolic balance to the control of insulin sensitivity. Original version available at http://www.jci.org/articles/view/3704
    • …
    corecore