519 research outputs found

    Molecular Autism: accelerating and integrating research into neurodevelopmental conditions.

    Get PDF
    AbstractWe are delighted to announce the launch of Molecular Autism - a new open-access journal published by BioMed Central.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    DSM-5: the debate continues.

    Get PDF
    We are fortunate to have invited commentaries from the laboratories of Dr Cathy Lord and Dr Fred Volkmar offering their perspectives on the new Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 criteria for the autism spectrum. Both commentaries note how DSM-5 collapses the earlier diagnostic categories of the pervasive developmental disorders into a single category of autism spectrum disorder. In addition, DSM-5 collapses social and communication domains into a single combined domain. The commentaries go on to discuss the positive aspects of these changes and raise some areas of potential concern. We support the evidence-based changes to autism diagnosis found in DSM-5, and look forward to further studies on the autism phenotype as this has implications for diagnosis and treatment. As our mechanistic understanding of autism improves, diagnoses based on behavioral parameters will continue to provide opportunities for interventions targeting the behaviors, while etiological diagnoses will provide opportunities for interventions tailored to etiology.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Genetics in psychiatry: common variant association studies.

    Get PDF
    Many psychiatric conditions and traits are associated with significant heritability. Genetic risk for psychiatric conditions encompass rare variants, identified due to major effect, as well as common variants, the latter analyzed by association analyses. We review guidelines for common variant association analyses, undertaking after assessing evidence of heritability. We highlight the importance of: suitably large sample sizes; an experimental design that controls for ancestry; careful data cleaning; correction for multiple testing; small P values for positive findings; assessment of effect size for positive findings; and, inclusion of an independent replication sample. We also note the importance of a critical discussion of any prior findings, biological follow-up where possible, and a means of accessing the raw data.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Identification of Rare Causal Variants in Sequence-Based Studies: Methods and Applications to VPS13B, a Gene Involved in Cohen Syndrome and Autism

    Get PDF
    Pinpointing the small number of causal variants among the abundant naturally occurring genetic variation is a difficult challenge, but a crucial one for understanding precise molecular mechanisms of disease and follow-up functional studies. We propose and investigate two complementary statistical approaches for identification of rare causal variants in sequencing studies: a backward elimination procedure based on groupwise association tests, and a hierarchical approach that can integrate sequencing data with diverse functional and evolutionary conservation annotations for individual variants. Using simulations, we show that incorporation of multiple bioinformatic predictors of deleteriousness, such as PolyPhen-2, SIFT and GERP++ scores, can improve the power to discover truly causal variants. As proof of principle, we apply the proposed methods to VPS13B, a gene mutated in the rare neurodevelopmental disorder called Cohen syndrome, and recently reported with recessive variants in autism. We identify a small set of promising candidates for causal variants, including two loss-of-function variants and a rare, homozygous probably-damaging variant that could contribute to autism risk

    Linking White and Grey Matter in Schizophrenia: Oligodendrocyte and Neuron Pathology in the Prefrontal Cortex

    Get PDF
    Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia

    Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD) in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example <it>Fmr1 </it>knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models.</p> <p>Methods</p> <p>To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes.</p> <p>Findings</p> <p>We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1) Changes in brain and neuronal morphology; (2) electrophysiological changes; (3) neurological changes; and (4) higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms.</p> <p>Conclusions</p> <p>The results indicated that mutations in ASD genes result in defined groups of changes in mouse models and support a broad neurobiological approach to phenotyping rodent models for ASD, with a focus on biochemistry and molecular biology, brain and neuronal morphology, and electrophysiology, as well as both neurological and additional behavioral analyses. Analysis of human phenotypes associated with these genes reinforced these conclusions, supporting face validity for these approaches to phenotyping of ASD models. Such phenotyping is consistent with the successes in <it>Fmr1 </it>knockout mice, in which morphological changes recapitulated human findings and electrophysiological deficits resulted in molecular insights that have since led to clinical trials. We propose both broad domains and, based on expert review of more than 50 publications in each of the four neurobiological domains, specific tests to be applied to rodent models of ASD.</p

    Advancing Paternal Age Is Associated with Deficits in Social and Exploratory Behaviors in the Offspring: A Mouse Model

    Get PDF
    Background: Accumulating evidence from epidemiological research has demonstrated an association between advanced paternal age and risk for several psychiatric disorders including autism, schizophrenia and early-onset bipolar disorder. In order to establish causality, this study used an animal model to investigate the effects of advanced paternal age on behavioural deficits in the offspring. Methods: C57BL/6J offspring (n = 12 per group) were bred from fathers of two different ages, 2 months (young) and 10 months (old), and mothers aged 2 months (n = 6 breeding pairs per group). Social and exploratory behaviors were examined in the offspring. Principal Findings: The offspring of older fathers were found to engage in significantly less social (p = 0.02) and exploratory (p = 0.02) behaviors than the offspring of younger fathers. There were no significant differences in measures of motor activity. Conclusions: Given the well-controlled nature of this study, this provides the strongest evidence for deleterious effects of advancing paternal age on social and exploratory behavior. De-novo chromosomal changes and/or inherited epigeneti
    corecore