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Abstract

Pinpointing the small number of causal variants among the abundant naturally occurring genetic variation is a difficult
challenge, but a crucial one for understanding precise molecular mechanisms of disease and follow-up functional studies.
We propose and investigate two complementary statistical approaches for identification of rare causal variants in
sequencing studies: a backward elimination procedure based on groupwise association tests, and a hierarchical approach
that can integrate sequencing data with diverse functional and evolutionary conservation annotations for individual
variants. Using simulations, we show that incorporation of multiple bioinformatic predictors of deleteriousness, such as
PolyPhen-2, SIFT and GERP++ scores, can improve the power to discover truly causal variants. As proof of principle, we apply
the proposed methods to VPS13B, a gene mutated in the rare neurodevelopmental disorder called Cohen syndrome, and
recently reported with recessive variants in autism. We identify a small set of promising candidates for causal variants,
including two loss-of-function variants and a rare, homozygous probably-damaging variant that could contribute to autism
risk.
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Introduction

The tremendous progress in massively parallel sequencing (aka

‘next generation’ sequencing) technologies enables investigators to

obtain genetic information down to single base resolution on a

genome-wide scale in a rapid and cost efficient manner [1,2,3].

The resulting datasets are high dimensional and very sparse, with

millions of genetic variants, the vast majority of which are rare in

the population. For example, in any genetic region, it is expected

that over 90% of genetic variants have a frequency in the

population of less than 1% [4]. Therefore in any given study, most

variants are only observed a small number of times (e.g. many of

them are singletons or doubletons). This sparse nature of the data

poses nontrivial statistical difficulties, and traditional statistical

methods employed for association testing with common variants

are not powerful in this context [5].

Both empirical and theoretical studies suggest that rare genetic

variants are an important contributor to disease risk [6,7,8,9]. Over

the past few years several statistical tests have been proposed to test

for association with rare variants in a small genetic region, such as a

gene [10,11,12,13,14,15,16,17]. The proposed association tests are

based on the idea of grouping together variants in the gene, and

testing for association at the gene rather than variant level. While

these methods attempt to increase power by cumulating the signal

across a larger region, they compromise precision and, in particular,

it is not possible to pinpoint individual causal variants and estimate

their effects on disease. Prioritizing a small number of plausible

causal variant candidates is very important for further follow-up

functional studies, since experimental analyses are difficult to

implement and expensive for large number of variants [18,19].

Furthermore, identification of causal variants is essential for

understanding the precise molecular mechanisms of disease. Despite

its importance, this problem is only now possible to address due to

the increasing availability of large-scale sequencing data and the

advances in computational methods for predicting the functional

effects of genetic variation [19].

The fundamental challenge in pinpointing rare causal variants is

that these variants are observed very infrequently in any given
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dataset and these sparse frequencies on their own are insufficient to

provide meaningful risk predictions. In particular, for singletons or

doubletons it will be necessary to incorporate prior functional and

evolutionary conservation information in order to prioritize them as

likely causal. Hierarchical modeling offers a natural strategy to

leverage collective evidence from rare variants with sparse data.

This can be accomplished in the presence of hierarchical covariates

that are associated with disease risk and which can be used for

implicitly aggregating the rare variants to permit stronger inferences

about individual variants. These hierarchical covariates are

characteristics of the variants themselves, such as the degree of

conservation across species, the position in the gene, and other

features that can be represented using bioinformatic measures.

Indeed, many annotation tools (such as ANNOVAR [20],

PolyPhen-2 [21], SIFT [22], GERP++ [23]) exist to predict the

possible impact of a variant on the function of a human protein, or

the level of evolutionary constraint for a variant. Even though such

bioinformatic predictions of deleteriousness are not extremely

accurate and are continuously being improved, they can provide

useful information on the prior likelihood that a variant is causal,

especially when multiple such predictors are used, as we show in this

work. In earlier work we have developed a hierarchical modeling

approach that is capable of estimating odds ratios for variants that

occur infrequently in the dataset [24,25]. Hierarchical regression

techniques have also been adopted in a Bayesian framework with

the goal of detecting rare causal variants [26,27], however they can

be computationally intensive and can be dependent on the choice of

the prior weights [27]. More recently, Pickrell [28] has used

hierarchical models to combine rich functional genomics annota-

tions (as generated by the ENCODE project [29]) and summary

statistics from GWAS to identify types of genomic elements

enriched among disease susceptibility loci.

Here we propose and investigate the performance of two

complementary statistical methods that are able to incorporate

prior information on the putative function of individual variants in a

gene in order to (1) identify a list of likely causal variants, and (2)

estimate the effects of these variants on disease. The first approach is

a backward elimination procedure based on groupwise association

tests that leads to the identification of a small set of ‘‘interesting’’

variants in the gene, which are enriched in causal variants. The

second approach complements the first by employing hierarchical

models [24,25] that can incorporate diverse functional and

evolutionary conservation annotations, and in turn provides effect

size estimates and confidence intervals for individual variants.

Methods

First, we review the basics of groupwise association tests, and

then we describe in detail the two complementary methods we

propose for prioritizing variants for follow-up functional studies.

Groupwise association tests for sequencing data
We assume that n subjects have been sequenced in a region of

interest (e.g., a gene), that contains m variants. Let X be the n|m
genotype matrix. We consider the regression model

g½E(Yi)�~a0zCiazXib ð1Þ

where g :ð Þ is a link function, and can be set to be the identity

function when traits are continuous, or the logistic function when

traits are dichotomous; a~(a1, . . . ,ap)’ are regression coefficients

for the covariates Ci~(Ci1, . . . ,Cip) that we want to adjust for.

Xi~(Xi1, . . . ,Xim) is the vector of genotypes for the ith individual,

and Yi is its trait value. b~(b1, . . . ,bm)’ are regression coefficients

for the m genetic variants.

We are interested in testing the null hypothesis of no genetic

effects: H0 : b~0: Testing each individual bj~0 or using

multiple df tests can lack power because of the sparsity of the

data and the many variants in a gene. Therefore, we need to

impose certain assumptions on bj ’s to make the test more

powerful. For example, one of the most widely used tests, the

Burden test, assumes that all b’s have essentially the same value,

say b0, and the regression model in (1) amounts to

g½E(Yi)�~a0zCiazb0

Pm
j~1 Xij . More generally, Lee et al.

[15] assume that b is a random variable with E(bj)~0,

Var(bj)~w2
j t and corr(bj ,bk)~r for different j and k. To test

the null hypothesis of no genetic effects H0 : b~0 the variance-

component score statistic has been proposed [15]:

Qr~(Y{ bm0m0)’Kr(Y{ bm0m0), ð2Þ

where Kr~XWRrWX’, and Rr~(1{r)Izr11’ specifies an

exchangeable correlation matrix, and W~diag(w1, . . . ,wm) is a

diagonal weight matrix, where each weight can be related, for

example, to the predicted functional effect of a variant (e.g.

PolyPhen-2 or SIFT score); for a dichotomous trait, bm0m0 is a vector

of estimated probabilities of Y under the null model. Although this

class of tests is more general, the two commonly used tests are the

Burden test (r~1) and the SKAT test (r~0). These score statistics

are easy to compute and can be written simply as

SKAT : Qr~0~
Xm

j~1

w2
j

Xn

i~1

(Yi{cmi,0mi,0)Xij

" #2

, and ð3Þ

Burden : Qr~1~
Xm

j~1

wj

Xn

i~1

(Yi{cmi,0mi,0)Xij

" #2

: ð4Þ

The null distribution of Qr is approximated by a mixture of x2
1

distributions. Davies’ method [30] or moment matching can be

Author Summary

Sequencing technologies allow identification of genetic
variants down to single base resolution for a whole human
genome. The vast majority of these variants (over 90%) are
rare, with population frequencies less than 1%. Further-
more, in a specific study, many of the variants identified
are not associated with the disease of interest, and
identification of the small proportion of truly causal
variants is a difficult task. Clearly, for causal variants that
are rare enough to only appear a few times in a study,
observed frequencies in cases and controls are not enough
to distinguish them from the vast majority of random
variation, and rich functional annotations can help identify
the causal variants. Here we propose to develop a set of
statistical methods that leverage diverse functional geno-
mics annotations with sequencing data to identify a small
set of potentially causal variants and estimate their effects.
Pinpointing a subset of potentially causal variants is crucial
for understanding precise biological mechanisms, and for
further experimental functional studies.

Identification of Rare Causal Variants in Sequence-Based Studies
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employed to calculate the p value. The relative performance of the

two tests will depend on the true underlying disease model. The

Burden test tends to be more powerful when disease associated

variants are all of the same type (risk or protective) and with effects

of similar magnitude. The SKAT test tends to be more powerful

when there is a mixture of risk and protective variants, and also

when only a small percentage of variants in a region are causal. A

parallel framework for family-based designs has also been

proposed [16].

Backward elimination procedure
The groupwise association tests described above test for

association at a gene level, but are not able to pinpoint individual

causal variants in the gene. However, once a gene has been shown

to contain variants associated with disease (e.g. using the Burden

or SKAT tests), identifying the individual causal variants among

the many variants in a gene is of considerable interest as it can lead

to a better understanding of the molecular mechanisms underlying

a complex trait, and is essential for further experimental validation

work.

Starting with a groupwise association test, one natural way to

identify causal variants that are individually of weak effect is to

evaluate their contribution to a given set of variants by removing

the variant from the set, and assessing the resulting effect, e.g. the

p value for the reduced set. The following iterative algorithm

(essentially a backward elimination procedure) is designed for this

purpose.

Backward Elimination Algorithm: Step 1. Start with a set

of r variants V~fu1, . . . ,urg. The current set is Vc~V . Compute

the score statistic Qr in eq. (2) (either r~0 or r~1) for this

current set Vc, and compute the p value: pVc
.

Step 2. Remove each of the r variants one at a time from Vc, i.e.

consider the sets V{i~fu1, . . . , ui{1, uiz1, . . . , urg with

i~1 . . . r, and then compute the corresponding score statistic

and p value for each of these reduced sets: pV{i
.

Step 3. If min(pV{1
, . . . , pV{r

)ƒpVc
then remove the variant k

that leads to the smallest p value:

k~argmin(pV{1
, . . . , pV{r ):

The current set becomes Vc~V{k and repeat steps 2 & 3. If the

current p value cannot be improved, then go to step 4.

Step 4. Return the current set of variants.

The results on a typical simulated example are shown in Figure

S1. We show there the effect of removing a causal variant on the p

value of the reduced set (i.e. pV{i
in Step 2 above), compared to

removing a non-causal variant. As shown, the removal of causal

variants will tend to result in an increase in the p value for the

reduced set, as desired. There is a highly significant difference in

the p values for the reduced sets when removing causal vs. non-

causal variants (bootstrap Kolmogorov-Smirnov test p value

v10{6).

This algorithm is applicable when the number of variants we

start with in Step 1 is not too large (otherwise, the contribution of a

weak variant to a large set is difficult to evaluate). However,

sequencing a gene in thousands of individuals can lead to the

detection of potentially hundreds of variants, or more. Therefore,

we use a resampling procedure, whereby each time a small

number of variants is chosen (say r~10{20) from the large

number of variants identified in a gene, and then the above

algorithm is applied to such small sets a large number of times (in

our examples we use 2000 such re-samplings, although this

number can be increased in the case of a large number of variants

in the gene). At the end, for each variant in the gene we calculate

the number of times it was returned in Step 4; we call this number

the return count for a variant. A similar resampling procedure has

been applied before in the context of gene-by-gene interaction

[31]. Our goal is to use the sample of return counts to partition

variants into two groups: ‘‘interesting’’ (higher return counts) and

‘‘non-interesting’’ (lower return counts), with the ‘‘interesting’’

category expected to be enriched in disease causing variants. We

use nonparametric EM-like methods [32] to identify the two

subgroups (see Text S2 for more details).

Integrating functional annotation into the above

algorithm. It is well recognized that certain functional catego-

ries are more likely to be enriched among causal variants than

others [28,33]. An obvious example is rare non-synonymous

variants, which are known to be enriched among disease causing

variants. Similarly, loss-of-function (LoF) variants, including

nonsense, splice-site and frameshift mutations, are heavily

enriched among causal variants [18]. Therefore stratifying

variants by different functional categories can improve false

discovery rates. We can incorporate information on functional

annotation in the backward elimination algorithm above. This can

be done by simply applying the algorithm within different classes,

say non-synonymous and synonymous. Furthermore, other

functional or conservation scores (such as PolyPhen-2, SIFT and

GERP++ scores) can be explicitly incorporated in the Burden and

SKAT score statistics themselves (as weights associated with

individual variants in eq. (2)), although only one such score can be

incorporated at a time.

Hierarchical model to estimate odds ratios of individual
rare variants

A complementary approach to the backward elimination

procedure described above is a hierarchical model. Hierarchi-

cal modeling has several important advantages in the analysis

of rare variant data, because it can naturally integrate various

functional prediction scores for individual variants. Such prior

knowledge will be essential in pinpointing the likely causal

variants in a gene, especially for causal variants that are rare

enough to only appear a few times in a study (e.g. singletons

and doubletons). For such variants, observed frequencies in

cases and controls are clearly not enough to distinguish them

from the vast majority of random variation (in the Nelson et al.

study [4], more than 74% of variants were singletons or

doubletons). Information on the putative functional effect of a

variant on the protein or the degree of evolutionary conser-

vation can be an important indicator on the likelihood of a

variant being causal.

Such functional information can be incorporated through a

hierarchical model [24,25]. In the first stage, the trait value Y is

related to the genotypes and possible confounders via the following

model:

g½E(Yi)�~a0zCiazXib, ð5Þ

with notations similar to those in model (1) above.

A second stage model relates the individual variant risks to prior

(e.g. functional annotation) information known about the variants:

b~Zªzd, ð6Þ

where Z is an m|k matrix for the k variant covariates (e.g.

functional information); c is a k|1 vector of regression

Identification of Rare Causal Variants in Sequence-Based Studies
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parameters for the second stage covariates, and d is a vector of

normally distributed residual effects, assumed (for convenience) to

be statistically independent. A principal advantage of the

hierarchical modeling framework is that it can easily incorporate

multiple functional annotations.

Combining the two models, one obtains the following gener-

alized linear mixed effects model:

g½E(Yi)�~a0zCiazXiZªzXid: ð7Þ

The parameters of this model can be estimated using a hybrid

Bayesian pseudo-likelihood approach which performs Bayesian

estimation of the variance component of the model and then

conducts pseudo-likelihood estimation of the fixed and random

effects using this estimated random effects variance [24,25]. We

can use the resulting estimates for the odds ratios and their

standard errors to rank variants in a gene. Naturally the most

difficult to identify are causal variants that occur only a few

times. The odds ratio estimates for such variants will heavily

depend on the higher level covariates, such as information on

the predicted functional effect for a variant. For example, for a

variant that occurs infrequently in a dataset (e.g. 2 times in cases

and 0 times in controls), knowing that it is a LoF variant

increases its likelihood to be a causal variant compared with a

synonymous variant with the same frequency.

Backward elimination procedure and hierarchical

model. We combine the two complementary methods, the

backward elimination procedure and the hierarchical modeling

framework, as follows. We identify the list of ‘‘interesting’’ variants

from the backward elimination procedure, and for each of these

variants we report the effect size estimate, and the associated

standard error obtained from the hierarchical model (when

applied to all variants, not just to the ‘‘interesting’’ list). The

variants in the ‘‘interesting’’ list can be naturally ranked according

to these effect estimates. We show below that restricting attention

to only the list of ‘‘interesting’’ variants can improve the ranking of

causal variants, and that this combined approach performs well in

the scenarios we investigated.

Both methods are computationally efficient and have been

implemented in software available on the authors’ website (http://

www.columbia.edu/,ii2135/).

Results

We evaluate the performance of the proposed methods using

simulated data and then apply them to two sequencing studies, the

Dallas Heart Study and a study on Autism Spectrum Disorders.

Simulated data
We simulated sequence data on 10,000 haplotypes in one

genomic region of length 1 Mb under a coalescent model using the

software package COSI [34]. The model used in the simulations

was the calibrated model for the European population. For our

purposes, we randomly sampled small subregions of size 10 kb,

and simulated datasets with n~2000 individuals (equal number of

cases and controls). The number of variants and the minor allele

frequency (MAF) distribution varies depending on the subregion

sampled.

We considered two disease models (Table 1). In these two

models, the odds ratio (OR) is a decreasing function of the MAF.

For both models, we assume that 10%{20% of the variants with

MAF #0.05 in the 10 kb region under investigation are causal

variants.

For a dichotomous trait, we assumed the logistic model:

logit½P(Yi~1)�~a0zb1Xi1z . . . zbmXim,

with a0 chosen such that the disease prevalence was 0.05.

We have also simulated bioinformatic covariates for variants to

be used in the backward elimination algorithm, as well as to be

incorporated in the hierarchical model. A first bioinformatic

covariate we simulate is a binary variable, such as whether a

variant is non-synonymous or not. Based on empirical studies [4],

we consider the non-synonymous to synonymous ratio (NS:S) for

the rare variants in the region to be between 0:6{1:4 (depending

on the strength of the purifying selection in the region). We assume

that 80% of causal variants are non-synonymous, and then using

Bayes’ rule we calculate the proportion of non-causal variants that

are non-synonymous (see Table 2). Given these settings, the

proportions of causal variants among non-synonymous and

synonymous variants can be easily derived and are reported for

completeness in Table 2.

Furthermore, additional variant annotation tools for non-

synonymous variants exist, and are able, for example, to predict

the damaging effect of an amino acid substitution (PolyPhen-2 and

SIFT), and to assess the extent of evolutionary conservation at a

position (GERP++). Therefore, for non-synonymous variants we

simulate two additional predictors, as follows. The first bioinfor-

matic predictor (B1) for non-synonymous variants is defined as a

binary indicator whether a variant is predicted to be damaging or

not. Following the empirical results in Cooper et al. [18] we

assume that 30% of non-synonymous, non-causal variants are

damaging (possibly or probably), and that 80% of non-synony-

mous, causal variants are damaging (Table 2). A second bioinfor-

matic predictor (B2) is also defined as a binary indicator whether a

variant is predicted to be probably damaging or not. Again, as in

Cooper et al. [18] we assume that 10% of non-synonymous, non-

causal variants are probably damaging, and that 80% of non-

synonymous, causal variants are probably damaging (Table 2). To

assess the effect of using a non-informative predictor, we also

simulate a binary predictor with 50% non-synonymous causal and

50% non-synonymous non-causal variants having a value of 1 for

this non-informative predictor.

The main goal of the proposed methods is to combine

sequencing data with functional predictions about the deleteri-

ousness of variants to identify a set of promising variants, enriched

in causal variants. Furthermore, the selected variants can be

ranked according to their return counts from the backward

elimination procedure, or the estimated b̂b effects from the

hierarchical model (ranking based on Z scores gave similar

results). We use several measures to assess the performance of the

methods. The main measures are: (1) the overall ranking of the

true causal variants among the variants in the gene, and (2) the

bias and coverage accuracy in the estimation of effect sizes for the

variants from the hierarchical model.

Ranking of causal variants: Simulation results
Nonparametric mixture modeling of return counts. In

what follows, we apply the backward elimination procedure

described in Methodsseparately to non-synonymous and synony-

mous variants. Since the non-synonymous variants tend to be

enriched in causal variants, the sample distribution of return counts

obtained for the non-synonymous variants tends to exhibit two

separate subgroups (a ‘‘non-interesting’’ group, enriched in null

variants, and an ‘‘interesting’’ group, enriched in causal variants).

We identify these two groups using an expectation-maximization

Identification of Rare Causal Variants in Sequence-Based Studies
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(EM) algorithm for nonparametric estimation of mixture models

and declare as ‘‘interesting’’ those variants belonging to the right tail

component (which corresponds to the larger return counts). This is

illustrated in Figure S2 which depicts for a simulated example the

histogram of return counts for non-synonymous variants with the

fitted two-component mixture overlaid.

For synonymous variants, since only a small proportion of

causal variants are expected to be synonymous, the sample

distribution of return counts often fails to exhibit separate groups

in our simulations; therefore we select the variants with the top

20% return counts as ‘‘interesting’’ to be further investigated;

although we expect less than 20% of synonymous variants to be

causal (indeed in our simulations only 3%–10% of the synonymous

variants were causal), we conservatively choose the threshold of

20% to increase the probability of selecting causal variants,

especially since for synonymous variants, unlike the non-synony-

mous ones, we do not make use of additional information in

prioritizing variants.

Ranking of causal variants Non-synonymous vs.
synonymous

We employ the backward elimination procedure as well as fit a

hierarchical model including the full set of variants and assuming a

single functional predictor in the second stage, namely whether a

variant is non-synonymous or synonymous. Due to the expected

difference in enrichment of causal variants among non-synony-

mous versus synonymous variants we evaluate the overall ranking

of the causal variants separately among non-synonymous and

synonymous variants. More explicitly, among the non-synony-

mous variants selected as ‘‘interesting’’ by the backward elimina-

tion procedure we rank the causal variants based on their return

counts (this approach is denoted as BE in the figures below).

Furthermore, we also use the b̂b estimates obtained from the

hierarchical model to rank the causal variants among all non-

synonymous variants (HM) as well as among the non-synonymous

variants selected as ‘‘interesting’’ by the backward elimination

procedure (HMS). For each simulation we take the median of the

ranks of the causal variants involved and then compute the median

of these estimates across simulations. The ranking for the

synonymous variants is done similarly.

Figures 1(a) and S3(a) present the median ranks of the causal

non-synonymous variants based on the different ranking proce-

dures (HM, BE, and HMS). The hierarchical model (titled ‘‘HM’’

in the figure) results in higher median rank (worse performance)

than that of the backward elimination procedure (titled ‘‘BE’’ in

the figure). This is of course expected due to the smaller number of

variants that the backward elimination procedure returns as

‘‘interesting’’ (Figures 1(a) and S3(a)). However, despite excluding

a substantial proportion of variants in the backward elimination

process (the ‘‘non-interesting’’ category), we show that the top

ranked causal variants in the hierarchical model are kept in the

selected list (Figures 1(b) and S3(b)). For the scenarios investigated,

the number of causal, non-synonymous variants in the top 10

ranked variants varies between 5 and 8 for the case when the

percentage of causal variants in a region is 20% (Figure 1(b)), and

3–6 for the case with only 10% causal variants (Figure S3(b)).

When looking only among the ‘‘interesting’’ variants from the

backward elimination procedure, the overall ranking of causal

variants based on the hierarchical model estimates b̂b (titled

‘‘HMS’’) is similar to the one based on return counts in the

Table 1. Two disease models M1 and M2.

Model Description

M1 10%{20% of variants with MAFƒ0:05 have OR~e0:2D( log10 (MAF))D

M2 10%{20% of variants with MAFƒ0:05 have OR~e0:4D( log10 (MAF))D

The odds ratio (OR) is a decreasing function of the minor allele frequency (MAF) at the causal variants.
doi:10.1371/journal.pgen.1004729.t001

Table 2. Simulation scenarios.

All Non-synonymous

B1 B2

NS:S pC pCDNS pCDS pNSDC pNSDNC pDamagingDC pDamagingDNC pProbablyDC pProbablyDNC

0.6 0.1 0.21 0.03 0.8 0.33 0.8 0.3 0.8 0.1

1.0 0.1 0.16 0.04 0.8 0.47 0.8 0.3 0.8 0.1

1.4 0.1 0.14 0.05 0.8 0.56 0.8 0.3 0.8 0.1

0.6 0.2 0.42 0.06 0.8 0.27 0.8 0.3 0.8 0.1

1.0 0.2 0.32 0.08 0.8 0.42 0.8 0.3 0.8 0.1

1.4 0.2 0.28 0.10 0.8 0.53 0.8 0.3 0.8 0.1

NS:S is the ratio of non-synonymous to synonymous variants; pC is the percentage of causal variants among the rare variants in a region, with pCDNS being the
percentage of causal variants among the non-synonymous ones, and pCDS being the proportion of causal variants among the synonymous ones; pNSDC is the proportion

of non-synonymous variants among the causal ones; pNSDNC is the proportion of non-synonymous variants among the non-causal ones (these values are calculated

based on the NS:S ratio, pC , pNSDC). For non-synonymous variants only, we simulate two additional bioinformatic predictors (B1 and B2), meant to resemble the

‘damaging’ (including possibly and probably) and ‘probably damaging’ annotations from PolyPhen-2. pDamagingDC is the proportion of causal variants that are labeled as

‘damaging’ and pDamagingDNC is the proportion of non-causal variants that are labeled as ‘damaging’. Similar notations for ‘probably damaging.’

doi:10.1371/journal.pgen.1004729.t002
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backward elimination procedure (Figures 1 and S3). Therefore the

backward elimination method can be used as an effective tool to

select and rank a set of promising variants, and reduce the overall

list of variants to a smaller, more manageable list, followed by

further characterization of these variants’ effects within the

framework of the hierarchical model. For all methods, and

regardless of disease model, the performance tends to decrease as

the non-synonymous to synonymous ratio increases from 0.6 to 1.4

(as the effect of purifying selection becomes weaker).

When looking at the synonymous variants separately, the results

are qualitatively similar to the non-synonymous case. However,

because only 20% of the causal variants are assumed synonymous,

the overall ranking of the few causal variants among the

synonymous variants is noticeably worse compared with non-

synonymous variants, as expected (Figures S4 and S5). For

example, in a region with 20% causal variants, overall we detect

between 2 and 3 causal synonymous variants among the top 10

ranked variants, and only 1–2 in a region with 10% causal

variants. Due to these high false-discovery rates for synonymous

variants, it may be more effective to focus initial efforts for causal

variant identification among the functional (non-synonymous and

LoF) variants. As genomic annotations become richer for

synonymous variants, we expect the discovery of causal variants

among synonymous variants to become more accurate.

Multiple bioinformatic predictors for non-synonymous
variants

We evaluate the effect on ranking the causal variants among

non-synonymous variants when additional bioinformatic predic-

tors are added to the hierarchical model (in addition to the

indicator whether the variant is non-synonymous vs. synonymous).

Note that synonymous variants were assigned a bioinformatic

predictor of 0.

We restrict attention to ranking only among the ‘‘interesting’’

variants, as selected by the backward elimination procedure. As

shown in Figure 2, when we add one bioinformatic predictor (B1

or B2; see Table 2), the ranking of causal variants improves

significantly compared to the original hierarchical model that only

uses a binary predictor (whether a variant is non-synonymous or

not). The improvement is more pronounced with predictor B2, due

to the higher specificity of this predictor. For example, for model

M1, a non-synonymous to synonymous ratio of 1.4 and 20%

causal variants in a region, the median number of causal variants

among the top 10 ranked non-synonymous variants increases from

5 (in the original hierarchical model) to 8 when using bioinfor-

matic predictor B2. Since we do not always know which of several

available bioinformatic predictors may have higher accuracy, the

hierarchical model allows us to combine multiple bioinformatic

predictors. When combining three bioinformatic predictors (two

predictors with the same sensitivity and specificity as B1 and one

predictor B2, all independent), we find that the ranking of causal

variants is now similar or superior to the ranking obtained when

using only the better of the two bioinformatic predictors (i.e. B2).

Similarly, when using a combination of four bioinformatic

predictors (four predictors with the same sensitivity and specificity

as B1), the ranking of causal variants is better than using just a

single predictor B1, and similar to using the more accurate

predictor B2. These results suggest that using multiple bioinfor-

matic predictors with different accuracies (even multiple weak

predictors) can help detection of the causal variants. Similar results

are obtained when the proportion of causal variants in a region is

10% (Figure S6).

We have also evaluated the effect of including a non-informative

predictor in the analysis, although in practice we expect that

functional annotations are correlated with the causal status of a

variant. The results are reported in Figures S11 and S12. As

shown, including a random (non-informative) bioinformatic

predictor does lead to worse performance compared to when

such a predictor is not included, although combining an

informative predictor (B1) together with a non-informative one

does help improve the performance. Again, the ability of the

hierarchical model to incorporate multiple functional predictors of

varying accuracy is an important feature when the best predictors

are not known a priori.

It is possible to incorporate one bioinformatic predictor, such as

B1 or B2, in the backward elimination procedure directly (as a

weight in the Burden test statistic). We found that for the case of

only one bioinformatic predictor, the backward elimination

procedure performed similarly with (or slightly worse than) the

hierarchical model (Figures S7). However, in general, it is not clear

how to choose one single functional annotation from several

annotations available. Therefore, the hierarchical model has the

important advantage that multiple bioinformatic predictors can be

included, and, as shown above, the ranking of the causal variants

improves with the addition of several predictors of varying

accuracy.

Effect size estimation for variants in the
hierarchical model

As already mentioned, the hierarchical model has distinct

advantages when multiple functional predictions are available for

variants. In particular, it is possible to provide effect size estimates

and standard errors for individual variants, that take into account

such diverse functional predictions. As seen in Table S1, for

disease model M1 (Table 1), absolute biases of the log odds ratio

estimates from the hierarchical modeling approach are similar

among the different scenarios while coverages are close to the

nominal level of 95%. In comparison, bias is further increased and

coverages are under the nominal level of 95% for disease model

M2 (which assumes higher odds ratios than model M1, Table 1),

though there is a trend towards reduced bias and improved

coverage with the addition of stronger bioinformatic predictor(s).

The biases observed here are due to several causes. One main

source of bias is the shrinkage phenomenon that occurs with

hierarchical models: in this setting of sparse data the model relies

heavily on the higher level covariates and as a result the estimated

risks of the non-causal variants with high bioinformatic predictor

scores will be biased upwards, while the risks of the causal variants

with low bioinformatic predictor values will be shrunk down,

resulting in increased bias and loss of power, respectively. As the

frequency of carriers increases, the model overrides the misclas-

sifications of the higher level covariate, yielding less biased

estimates (data not shown). This shrinkage is even more

pronounced for model M2, which assumes higher odds ratios for

the causal variants (compared to M1), resulting in the poorer

performance noted with model M2. An additional source of bias

comes from our analyses being conditional on the groupwise

(gene-based) test being significant.

Application to the Dallas Heart Study and
ANGPTL4

We first show an application of the proposed methods to a well

studied re-sequencing dataset for ANGPTL4 for 3,551 individuals

of varied ethnicity from the Dallas Heart Study. Rare and low-

frequency variants in this gene have been previously associated

with low serum triglyceride levels [35]. We consider log-

Identification of Rare Causal Variants in Sequence-Based Studies
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transformed triglyceride level as our phenotype, and adjust for

gender and ethnicity. As in the original study [35], we dichotomize

the phenotype by considering the individuals in the lowest quartile

as cases, and the individuals in the highest quartile as controls, for

a total of 898 individuals with variation in this gene. We identify

20 functional variants (missense, nonsense, and frameshift).

In Table 3 we report the functional variants, ranked by the

estimated effects b̂b from the hierarchical model taking into account

their PolyPhen-2 and GERP_RS scores. Also reported is the

return count from the backward elimination procedure (due to the

small number of variants in this gene we do not fit the

nonparametric mixture model in this example; instead we simply

rank all variants). All the top ranked variants that appear only in

cases (i.e. the lowest quartile) have been shown by Romeo et al.

[36] to severely compromise the function of the protein. In

particular, the top ranked variant, p.Lys217Ter, is a nonsense

variant that appears only once in an affected individual, and is

assumed to interfere with protein synthesis. The second, fourth,

seventh and eighth variants have been shown using functional

studies to lead to impaired protein secretion. The fifth variant

showed reduced ability to inhibit LPL (lipoprotein lipase) activity

in vitro, while the sixth variant introduced a premature

termination codon [36]. The third variant in the list, p.Glu40Lys,

is a missense variant (classified as probably damaging by

PolyPhen-2 and as evolutionarily conserved site by GERP_RS),

with a frequency of 1.3% in this dataset, and has been shown to be

significantly associated with plasma triglyceride levels [35].

However, due to its presence even among controls (i.e. the highest

quartile), this variant was not investigated in the functional studies

in Romeo et al. [36].

We next show an application to a gene with a larger number of

functional variants, and for which not much is known on the likely

causal variants. Hence the next application is a more difficult

example for the proposed methods.

Figure 1. (a) Median rank of causal variants among the non-synonymous variants for two disease models (M1 and M2) and three
values for the NS:S ratio (R = {0.6, 1.0, 1.4}). The proportion of causal variants in the region is 20%. HM refers to the original hierarchical model
with ranking of the causal variants among the non-synonymous variants, based on their estimated effects; BE refers to the backward elimination
procedure for non-synonymous variants; and HMS refers to the ranking of causal variants only among those non-synonymous variants selected by the
backward elimination procedure, with ranks based on the estimated effects from the hierarchical model. (b) The number of causal variants in Top 10
for non-synonymous variants.
doi:10.1371/journal.pgen.1004729.g001
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Application to the Cohen syndrome and VPS13B

The Vacuolar Protein Sorting 13 homolog B (VPS13B, also

known as COH1, MIM #607817) is a gene associated with Cohen

syndrome (CS, OMIM #216550), a rare autosomal recessive

neurodevelopmental disorder overrepresented in Finland and

common in Amish, Irish travelers and Greek/Mediterranean

founder populations [37,38]. At least 200 affected individuals of

diverse ethnic background have been reported so far with diverse

VPS13B mutations, including nonsense, missense, splicing, indels,

microdeletions and microduplications [38]. Despite clinical

heterogeneity in part related to ethnic background, the disorder

has core features, including non-progressive intellectual disability,

motor clumsiness, postnatal microcephaly, a typical facial gestalt,

hypotonia, intermittent neutropenia, and chorioretinal dystrophy

[39]. Behavioral disturbances are common among CS individuals,

and autistic traits have been reported in cases of greek/

mediterranean descent [40]. Furthermore, VPS13B mutations

have been found in individuals with autism [41] and non-

syndromic intellectual disability [42]. It is worth noting that

mutations in another member of the VPS13 gene family (VPS13A
or CHAC, MIM #605978, encoding for a protein known as

Chorein), cause chorea-acanthocytosis [43] (MIM #200150), a

recessive disorder of acanthocytosis and adult-onset choreic

involuntary movements with significant co-morbidity with psychi-

atric illness [44].

VPS13B is also an intolerant gene with a Residual Variation

Intolerance Score [45] of 22.44 (top 0.55% most intolerant genes)

in Europeans and a similar score for African Americans. We

applied the proposed methods to the 166 VPS13B variants

identified in a whole-exome sequencing autism spectrum disorders

(ASD) case/control dataset (n~860; more details on this dataset

can be found in Text S1). We tested for association with functional

(non-synonymous, nonsense and splice-sites) rare variants in this

gene and the Burden test p value was 0.01. We then used the

backward elimination algorithm to identify a set of ‘‘interesting’’

(i.e. potentially causal) variants, and for each of these variants we

report effect size estimates and standard errors from the

hierarchical model. Note that the ratio of non-synonymous to

synonymous variants in this gene is 0.84, hence towards the lower

end of values in our simulated scenarios.

Of the 166 variants in this gene, we focus on 74 that are non-

synonymous, nonsense or splice-sites (two variants affecting the

invariant splice acceptor site of the intron between exons 51 and

52 have been excluded from further analyses because they did not

validate by Sanger sequencing). Of these, the backward elimina-

Figure 2. The effect of multiple bioinformatic predictors for non-synonymous variants. Ranking is done only within the set of variants
selected by the backward elimination procedure. (a) Median rank of causal variants for two disease models (M1 and M2) and three values for the NS:S
ratio (R = {0.6, 1.0, 1.4}). The proportion of causal variants in the region is 20%. HMS refers to the hierarchical model with ranking of the causal variants
among the selected non-synonymous variants, based on their estimated effects, B1 refers to the hierarchical model with one bioinformatic predictor
(B1, Table 2), B2 refers to the hierarchical model with one bioinformatic predictor (B2), mB1 refers to the hierarchical model with three bioinformatic
predictors (B1, B1, and B2), and mB2 refers to the hierarchical model with four bioinformatic predictors (four B1s). (b) The number of causal variants in
Top 10 for non-synonymous variants.
doi:10.1371/journal.pgen.1004729.g002
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tion procedure selects 42: 2 of them are LoF (one nonsense and

one variant affecting an essential splice site), and of the missense

PolyPhen-2 predicts that 14 are probably damaging, 1 possibly

damaging, and 25 benign (Figure 3). In Figure 4(a) we show the

drop in p value each time a variant is being removed in step 3 of

the backward elimination procedure; the process stops when the p

value starts to increase as one tries to remove any of the remaining

variants. Also shown in Figure 4(b) is the distribution of return

counts (from the re-sampling procedure), and overlaid is the fitted

mixture with two distinct components. The 42 selected variants

belong to the second component of the fitted mixture (these are the

‘‘interesting’’ variants). As a comparison, applying the backward

elimination algorithm to the remaining 90 synonymous variants

results in no distinguishable ‘‘interesting’’ component (and

markedly smaller average return counts compared to the non-

synonymous case; Figure S8).

In Table 4 we report the top 20 variants among the selected

functional variants (ranked by the estimated effects b̂b from the

hierarchical model), along with their PolyPhen-2 and GERP_RS

scores. Noticeably, among the top ranked variants there is a

probably damaging variant (c:9592CwT, p.Arg3198Trp, anno-

tated on NM_152564.4 and Q7Z768-2, respectively) with 5

variant copies in cases and 1 in controls, with one case being

homozygous at the position. Furthermore, the top two variants in

the list have both very high C-scores [46] (36 and 35, top 0.1%),

based on the recently introduced measure of deleteriousness

Combined Annotation-Dependent Depletion (CADD) that inte-

grates diverse genome annotations. The two LoF variants (one

nonsense (c:10148CwG, p.Ser3383Ter) and one splice site

(c:2650z2TwG)) have been seen only once in cases (i.e.

singletons). Notably, the splice variant c:2650z2TwG affects

the splice donor site of the intron between exons 18 and 19, and a

homozygous mutation in the splice acceptor site of the same intron

has been identified in an individual suffering from CS [47]. As a

first step toward the characterization of the variants, we used

Sanger sequencing to validate two cases with the c:9592CwT
variant and the cases with c:10148CwG and c:2650z2TwG
and study their inheritance pattern. This analysis is of particular

relevance for singletons, considering that the false discovery rate

among those can be high. All variants were validated and found to

be inherited (Figure S9). In one family with the c:9592CwT, both

affected children are homozygous and inherit the variant from

their parents (father homozygous and mother heterozygous -

Figure S9A). In a second family with c:9592CwT, the variant is

transmitted from heterozygous parents to one affected child, and

untransmitted to the unaffected child (Figure S9B). The

c:2650z2TwG variant is inherited from the mother (Figure

S9C), and the c:10148CwG variant is paternally transmitted to

both affected children (Figure S9D).

To understand the impact of the variants on the molecular

functions of VPS13B, all 42 variants deemed ‘‘interesting’’ by the

backward elimination procedure were projected on the protein

topology, reconstructed with the Pfam domains (N-terminal region

of Chorein, DUF1162, ATG C-terminal domain), the experimen-

tally ascertained Golgi targeting domain [47], and 11 transmem-

brane domains predicted with TMPred [48] (Figure S10). Benign

variants appear scattered along the protein topology, while some

of the predicted damaging variants map to known domains,

including a missense in the DUF1162 domain and two missense in

the Golgi targeting domain. Prediction of the structural changes

that can result from the variants using MutPred [49] further

revealed two top deleterious missense variants (p.Tyr1428His,

predicted to cause gain of disorder (p = 0.006), loss of beta-sheet

(p = 0.008) and gain of alpha-helix (p = 0.049); and p.Asp1475Gly,

predicted to cause gain of alpha-helix (p = 0.049)). The LoF

variants are upstream the Golgi domain, thus they are likely to

cause premature insertion of a stop codon, activating nonsense-

mediated mRNA decay or producing protein isoforms lacking the

Golgi targeting domain. Although the pathological mechanisms

caused by VPS13B insufficiency or mutations are still unknown,

fibroblasts isolated from individuals with CS show severe

fragmentation of the Golgi apparatus into ministacks [47], a

defect observed in neurodegenerative disorders [50] and hypoth-

esized to precede neuronal cell death [51]. Therefore, the LoF

variants might prevent proper localization of VPS13B and

disruption of its molecular functions on Golgi assembly or

maintenance, triggering the pathological cascades underlying

Cohen syndrome and/or autism.

Most of the variants selected are singletons (34 out of 42). As

previously mentioned, for singletons accurate bioinformatic

predictors about their likely functional effects are essential in

order to identify such variants as promising, and hierarchical

modeling is a natural framework to incorporate such information.

Naturally the false discovery rate among these singletons can be

high, and dependent on the sensitivity and specificity of the

bioinformatic predictors used to characterize the variants in the

hierarchical model. For comparison, in Table S2 we show the top

20 variants among the functional variants selected by the

backward elimination procedure with ranking based on return

count. No functional prediction score was used in this analysis.

Although the more common variants still occur among the top

variants in this analysis, for singletons, the hierarchical model

gives higher priority to variants with high scores for both

PolyPhen-2 and GERP_RS (Table 4). This ability of the

hierarchical model to prioritize low frequency variants by taking

into account multiple functional predictions is a distinct

advantage over ranking based on return count alone (with no

consideration of the PolyPhen-2 and GERP_RS scores for the

variants).

Discussion

Pinpointing the rare causal variants among a large number of

variants that occur in a genetic region is a difficult challenge, but

crucial for follow-up functional studies, and for a better

understanding of the molecular mechanisms that lead to disease.

For many causal variants that occur only a few times in a dataset,

incorporation of external information characterizing the variants

(such as bioinformatic predictions on the deleteriousness of a

variant) is essential to help prioritize these rare variants. We have

described here two complementary statistical methods, that are

able to integrate diverse functional annotations on individual

variants in a region, and produce a selected list of candidates for

causal variants, ranked according to their estimated effect sizes.

The backward elimination procedure offers a natural way to select

a set of promising variants, while using multiple functional

predictors in the hierarchical modeling approach provides more

in depth characterization of variants’ effects on disease, and can

help boost the power to identify causal variants. We have focused

attention here on some of the commonly used annotations for

coding regions; however we acknowledge that there are other

possible functional genomics annotations available both for the

coding and non-coding regions [28] and with continued efforts to

improve these functional predictions this list will further expand.

We illustrate the proposed methods through an application to a

gene implicated in Cohen syndrome and autism, VPS13B. For

this gene, we show that among the top selected variants are two

LoF variants, and one rare, probably damaging variant that is
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homozygous in one affected individual. Autosomal recessive

mutations associated with autism have been recognized for

decades [52]. Recently, whole-exome sequencing has provided

strong evidence that rare, recessive LoF variation is a major

contributor to risk [53]. It is likely that many recessive missense

variants contribute to ASD as well, although there has been

insufficient power in whole-exome studies carried out to date to

fully explore such variation. VPS13B is indispensable for the Golgi

apparatus, and genes important for Golgi morphology and

function have been linked to autism disorders, including RAB39B,

mutated in a X-linked intellectual disability associated with autism,

epilepsy and macrocephaly [54], and UBE3A, responsible of

Angelman syndrome [55]. In addition, disturbances in pathways

linked to Golgi, e.g. autophagy [56] and protein glycosylation [57],

have been associated with autism etiology. Our findings extend the

mutational landscape of VPS13B in Cohen syndrome and autism

and further strengthen the connection between Golgi homeostasis

and autism.

Figure 3. Predicted deleteriousness scores are shown for 71 rare functional variants (non-synonymous, nonsense and splice-sites).
From the top, the first plot depicts the PolyPhen-2 score for each variant, the second depicts the GERP_RS score, and the third depicts variant counts
for cases (up) and controls (down). Green tick marks indicate a variant contained in an exon, and red ticks indicate that a variant is selected by the
backward elimination procedure. LoF variants are marked by a black asterisk; the homozygous probably damaging variant is marked by a red asterisk.
The location of five protein domains (ChoreinN, TM2, TM4, DUF1162, Golgi targeting element, and ATG C) are depicted by boxes at the top of the plot
(see Figure S10 for a complete view of VPS13B protein domains). Variants are plotted equidistantly on the x-axis.
doi:10.1371/journal.pgen.1004729.g003
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A rather large number of selected variants in the backward

elimination procedure are singletons. Causal variants that appear

as singletons in a dataset are difficult to distinguish from random

genetic variation, and accurate functional predictions on such

variants are crucial and will help in identifying those singletons

more likely to be causal. Currently, it is not uncommon for

predictions on the deleteriousness of a variant to be discordant

(e.g. predictions from PolyPhen-2 and SIFT), and combining such

multiple predictors can be difficult, although aggregate deleteri-

ousness scores, such as Condel [58] and C-score [46], are

available. Since the hierarchical model can easily incorporate

multiple functional predictions, it has a distinct advantage over

methods that cannot consider multiple predictions at once. Indeed,

most of the existing groupwise association tests (including the

Burden and SKAT tests discussed here) can only use one

functional score at a time, and therefore it is not clear how

multiple scores (that are sometimes discordant) can be taken into

account. It is also worth noting that in the case of existing Burden

(or SKAT) tests, a variant with a low functional score (e.g.

PolyPhen-2 score close to 0) will be excluded from analysis

regardless of the evidence of association that the data suggests

(frequency in cases vs. controls). In contrast, in the presence of

sufficient case-control frequencies, the hierarchical model places

more weight on the larger case-control frequencies overriding the

information from the bioinformatic predictors when that infor-

mation does not support the likelihood of an increased risk.

Therefore, the hierarchical model has an advantage also over

simple methods to prioritize based on one functional score (e.g.

PolyPhen-2) alone.

The use of next-generation sequencing technologies may lead to

higher error rates compared to a traditional Sanger sequencing

platform. Sequencing errors may be disproportionately present

among singletons or very rare variants, especially for larger sample

sizes, although for a single gene the number of errors is expected to

be relatively small. Therefore, as a first step toward the

characterization of the top ranked variants, Sanger sequencing

can be used to validate the variants.

Classical variable selection methods (such as ridge regression

[59] and LASSO [60]) are natural tools to employ in this setting in

which the causal variants are expected to be just a small subset of

all sequenced variants. Such methods have recently been applied

to sequencing data [61,62]. However, because these methods have

not been developed to handle such sparse data, they have difficulty

in selecting very rare variants (such as singletons). Furthermore, it

is not clear how one can take into account multiple functional

predictions for variants. Further work in this area needs to be done

to assess the ability of these classical variable selection approaches

to identify rare causal variants. Other existing methods one could

use for causal variant prioritization fall into two extremes. Some

methods use only data on observed case-control frequencies. For

example, in KBAC [11], variants are weighted using data-adaptive

weights, reflecting the estimated effect of a variant on the

phenotype, and these weights can be potentially used to rank

variants. However, as explained above, for rare and low frequency

variants it is essential to make use of rich functional genomics

annotations. At the other extreme, one can rank variants based on

a functional score alone. This latter class of methods has the

important drawback, especially in the case of complex traits, that it

ignores case-control frequencies, and relies heavily on the accuracy

of the bioinformatics predictor. Based on simulation studies, we

have shown that hierarchical modeling that takes into account

both association evidence coming from the sequencing data, and

available functional genomics predictions, have better perfor-

mance compared with ranking based on a single bioinformatic

predictor alone (Text S3 and Figure S13).

We have focused here on the selection of variants that increase

risk to disease. However, one can in principle use the proposed

methods to identify protective variants. Instead of a Burden type

statistic, one can use a SKAT statistic in the backward elimination

procedure (also implemented in our software). Similarly, for the

hierarchical model, variants with low functional score and higher

frequency in controls compared with cases will be candidates for

protective variants.

Further improvements to the backward elimination procedure

are possible. For example, instead of partitioning variants into two

groups based on a binary bioinformatic predictor, such as non-

synonymous and synonymous, an alternative would be to calculate

stratified false discovery rates [63] or possibly covariate-modulated

local false discovery rates [64]. The advantage of such an

approach would be that more than one covariate can be added

to the backward-elimination procedure, although this point

Figure 4. Results from the backward elimination procedure for
non-synonymous and splice site variants in VPS13B. (a) The
change in p value is shown as variants are being removed one by one
(when the backward elimination procedure is run once on all non-
synonymous variants). (b) Distribution of return counts for non-
synonymous and splice site variants in VPS13B; overlaid is a fitted
mixture with two components.
doi:10.1371/journal.pgen.1004729.g004
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requires further work. Furthermore, information on the location of

a variant within a gene or region of interest, e.g. what functional

domain it affects, can be important, especially for missense

variants. We have previously described scan statistic approaches to

identify clusters of rare disease associated variants, and have

shown applications to both autism and schizophrenia studies

[65,66], suggesting that incorporating such location information

into the backward elimination procedure could improve the

identification of causal variants.

The estimates of a rare variant’s effect on disease from the

hierarchical model can have substantial bias. This happens

because in any particular gene or region only a small proportion

of variants are expected to be disease causing, and most of the

variants represent random genetic variation. Therefore, when

estimating odds ratios of causal variants, there is a strong shrinkage

effect toward the overall estimate. Incorporation of accurate

functional predictors in the hierarchical model is one possible way

to help attenuate this bias; further work is needed on finding better

ways to reduce the bias.

In addition to their ability to pinpoint likely causal variants, the

proposed methods can be used to prioritize variants for genotyping

in independent datasets for the purpose of replication or

validation. This is relevant when re-sequencing the gene or region

in additional datasets is too expensive, and one chooses instead to

genotype variants discovered in the original study [67]. Moreover,

the proposed approaches can be used at a genome-wide scale, by

first selecting the promising genes based on the overall gene-based

test or other criteria (e.g. good biological candidate) followed by

the backward elimination and hierarchical model approach to

prioritize the variants within the genes identified as promising.

Such a genome-wide analysis can, for example, identify classes of

functional elements or domains enriched among the top variants

in the selected genes.

The proposed methods are applicable to case-control or

population-based designs. However, family-based designs repre-

sent a natural way to identify causal variants. For example, in

multiplex families, significant sharing of a non-synonymous

mutation among multiple affected relatives can be an important

indication of causality. Bayesian approaches in this context have

been developed before [68], and further work in this area is worth

pursuing.

In summary, we have proposed and investigated two comple-

mentary statistical methods to identify causal variants among the

naturally occurring genetic variation at a locus. They are able to

incorporate sequencing data with various functional predictors on

variants, and select a small number of variants that are enriched in

causal variants. In the current study, we applied the proposed

methods to a gene known to contain risk variants for ASD as

proof-of-principle, and identify several interesting variants,

including two LoF variants and a homozygous probably damaging

variant likely important to autism risk.

Supporting Information

S1 Figure The effect of removing causal vs. non-causal variants

on the p value for the reduced set (Step 2 of the backward

elimination procedure). Results are shown for one (typical)

simulated dataset with 2000 individuals, in a 25 kb region with

10% causal variants, under model M2. Removing the non-causal

variant corresponding to the red circle leads to the largest drop in

p value for the reduced set, and hence this variant is being

removed in this iteration from the current set (Step 3 of the

backward elimination procedure).

(EPS)

S2 Figure Non-parametric mixture fit to sample distribution of

return counts in the backward elimination procedure (simulated

example). The return counts are for non-synonymous variants,

and two groups can be distinguished, one corresponding to the

‘‘non-interesting’’ class, and the other to the ‘‘interesting’’ class.

(EPS)

S3 Figure (a) Median rank of causal variants among the non-

synonymous variants for two disease models (M1 and M2) and

three values for the NS:S ratio (R = {0.6, 1.0, 1.4}). The

proportion of causal variants in the region is 10%. HM refers

to the original hierarchical model with ranking of the causal

variants among the non-synonymous variants, based on their

estimated effects, BE refers to the backward elimination

procedure for non-synonymous variants, and HMS refers to the

ranking of causal variants only among those non-synonymous

variants selected by the backward elimination procedure, with

ranks based on the estimated effects from the hierarchical model.

(b) The number of causal variants in Top 10 for non-synonymous

variants.

(EPS)

S4 Figure (a) Median rank of causal variants among the

synonymous variants for two disease models (M1 and M2) and

three values for the NS:S ratio (R = {0.6, 1.0, 1.4}). The

proportion of causal variants in the region is 20%. HM refers to

the original hierarchical model with ranking of the causal variants

among the synonymous variants, based on their estimated effects,

BE refers to the backward elimination procedure for synonymous

variants, and HMS refers to the ranking of causal variants only

among those synonymous variants selected by the backward

elimination procedure, with ranks based on the estimated effects

from the hierarchical model. (b) The number of causal variants in

Top 10 for synonymous variants.

(EPS)

S5 Figure (a) Median rank of causal variants among the

synonymous variants for two disease models (M1 and M2) and

three values for the NS:S ratio (R = {0.6, 1.0, 1.4}). The

proportion of causal variants in the region is 10%. HM refers to

the original hierarchical model with ranking of the causal variants

among the synonymous variants, based on their estimated effects,

BE refers to the backward elimination procedure for synonymous

variants, and HMS refers to the ranking of causal variants only

among those synonymous variants selected by the backward

elimination procedure, with ranks based on the estimated effects

from the hierarchical model. (b) The number of causal variants in

Top 10 for synonymous variants.

(EPS)

S6 Figure The effect of multiple bioinformatic predictors for

non-synonymous variants. Ranking is done only within the set of

variants selected by the backward elimination procedure. (a)

Median rank of causal variants for two disease models (M1 and

M2) and three values for the NS:S ratio (R = {0.6, 1.0, 1.4}). The

proportion of causal variants in the region is 10%. HMS refers to

the hierarchical model with ranking of the causal variants among

the selected non-synonymous variants, based on their estimated

effects, B1 refers to the hierarchical model with one bioinformatic

predictor (B1, Table 2), B2 refers to the hierarchical model with

one bioinformatic predictor (B2), mB1 refers to the hierarchical

model with three bioinformatic predictors (B1, B1, and B2), and

mB2 refers to the hierarchical model with four bioinformatic

predictors (four B1). (b) The number of causal variants in Top 10

for non-synonymous variants.

(EPS)
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S7 Figure The effect of incorporating bioinformatic predictors (B1

and B2) for non-synonymous variants in the backward elimination

procedure (BE1 and BE2), and in the hierarchical model (B1 and B2)

on the number of causal variants in Top 10. Ranking is done only

within the set of variants selected by the backward elimination

procedure. Results for two disease models (M1 and M2) and three

values for the NS:S ratio (R = {0.6, 1.0, 1.4}) are shown. mB refers to

the hierarchical model with three bioinformatic predictors (B1, B1,

and B2). (a) 20% causal. (b) 10% causal.

(EPS)

S8 Figure Distribution of return counts from the backward

elimination procedure applied to synonymous variants in

VPS13B; overlaid is a fitted mixture with two components.

(EPS)

S9 Figure Molecular validation and transmission pattern analysis

for two cases with the c.9592C.T (p.Arg3198Trp) variant (A, B), the

c.2650+2T.G singleton LoF (C) and the c.10148C.G (p.Ser3383-

Ter) singleton missense (D). For each family, the electropherogram of

the relevant region is shown below the corresponding individual.

(EPS)

S10 Figure Schematic representation of VPS13B (Q7Z768-2) in the

Golgi membrane and the variants identified in this study. The Chorein

N-terminal domain is shown in magenta, DUF1162 in cyan, and ATG

C-terminal domain in green. The Golgi targeting domain overlaps

with the ATG C and is shown in purple. Amino acids affected by LoF

are shown in black, probably damaging missense in red, possibly

damaging in yellow, and benign in grey. The arrow points to the

homozygous probably damaging variant (p.Arg3198Trp).

(EPS)

S11 Figure The effect of incorporating a random bioinformatic

predictor R for non-synonymous variants in the hierarchical model

(20% causal). Ranking is done only within the set of variants selected

by the backward elimination procedure. Results for two disease

models (M1 and M2) and three values for the NS:S ratio (R = {0.6,

1.0, 1.4}) are shown. RB1 refers to the hierarchical model with two

bioinformatic predictors (a random one, i.e. R, and B1). (a) Median

rank of causal variants among the non-synonymous variants. (b) The

number of causal variants in Top 10 for non-synonymous variants.

(EPS)

S12 Figure The effect of incorporating a random bioinformatic

predictor R for non-synonymous variants in the hierarchical

model (10% causal). Ranking is done only within the set of variants

selected by the backward elimination procedure. Results for two

disease models (M1 and M2) and three values for the NS:S ratio

(R = {0.6, 1.0, 1.4}) are shown. RB1 refers to the hierarchical

model with two bioinformatic predictors (a random one, i.e. R,

and B1). (a) Median rank of causal variants among the non-

synonymous variants. (b) The number of causal variants in Top 10

for non-synonymous variants.

(EPS)

S13 Figure ROC curves of the z-values estimated from a

hierarchical model including PolyPhen-2 scores and an indicator

for the non-synonymous vs. synonymous status as the higher level

covariates (solid curves), and ROC curves based on ranking

variants using the PolyPhen-2 scores alone (dashed curves); 10% of

variants are assumed truly causal variants; associations between

the PolyPhen-2 scores and the causal status vary from odds ratio of

2 (blue) to 4 (red); m, the effect size as a function of standard

deviations, is assumed to be 0.5; estimates are averaged across 400

simulations (see Text S3 for more details on the simulation setup).

(EPS)

S1 Table Absolute biases and coverage probabilities when

estimating variant effects in the hierarchical model, for the

simulation scenarios in Table 2. Results for two disease models

(M1 and M2 - Table 1) are shown. Several functional predictors

are used in the hierarchical model: non-synonymous vs.

synonymous (NS vs. S), B1, B2, and a scenario with three

functional, independent predictors: two B1’s and one B2.

(PDF)

S2 Table Top 20 functional (non-synonymous, nonsense and

splice-site) variants in VPS13B; only a functional vs. synonymous

indicator is used as a binary functional predictor. The variants are

sorted according to return count. nA (nU ) is the minor allele count

in cases (controls); hom_A (hom_U) is the number of homozygous

genotypes in cases (controls); RC is the return count from the

backward elimination procedure; log odds ratios and their

standard errors are estimated from the hierarchical model. SnpEff

predicted effects are also reported. PolyPhen-2 and GERP_RS

scores are also reported but they are not used in the backward

elimination procedure.

(PDF)

S1 Text Describes details about the Autism Sequencing Dataset.

(PDF)

S2 Text Describes details about the nonparametric estimation of

multivariate mixtures.

(PDF)

S3 Text Presents comparisons between variant ranking from

hierarchical model and variant ranking from PolyPhen-2 scores.

(PDF)
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