58 research outputs found

    Combination Therapy with Radiation and PARP Inhibition Enhances Responsiveness to Anti-PD-1 Therapy in Colorectal Tumor Models.

    Get PDF
    PURPOSE: The majority of colorectal cancers are resistant to cancer immune checkpoint inhibitors. Ionizing radiation (IR) and several radiosensitizers, including PARP inhibitors, can enhance responsiveness to immune checkpoint inhibitors by potentially complementary mechanisms of action. We assessed the ability of radiation and PARP inhibition to induce proimmunogenic changes in tumor cells and enhance their in vivo responsiveness to anti-PD-1 antibodies. METHODS AND MATERIALS: We performed a candidate drug screen and used flow cytometry to assess effects of the PARP inhibitor veliparib on IR-mediated changes in MHC-1 antigen presentation and surface localization of immune-modulating proteins including PD-L1 and calreticulin in colorectal cancer tumor models. Reverse transcription polymerase chain reaction was used to assess the effects of veliparib and radiation on the expression of proinflammatory and immunosuppressive cytokines. The ability of concurrent PARP inhibition and subablative doses of radiation therapy to enhance in vivo responsiveness to anti-PD-1 antibodies was assessed using unilateral flank-tumor models with or without T-cell depletion. RESULTS: Veliparib was a potent radiosensitizer in both cell lines. Radiation increased surface localization of MHC-1 and PD-L1 in a dose-dependent manner, and veliparib pretreatment significantly enhanced these effects with high (8 Gy) but not with lower radiation doses. Enhancement of MHC-1 and PD-L1 surface localization by IR and IR+ veliparib remained significant 1, 3, and 7 days after treatment. IR significantly increased delayed tumoral expression of proinflammatory cytokines interferon-Ƴ and CXCL10 but had no significant effect on the expression of IL-6 or TGF-β. Concurrent administration of veliparib and subablative radiation therapy (8 Gy × 2) significantly prolonged anti-PD-1-mediated in vivo tumor growth delay and survival in both tumor models. Moreover, these effects were more pronounced in the microsatellite instability-mutated MC38 tumor model. Enhancement of anti-PD-1 mediated tumor growth delay with veliparib and IR was attenuated by CD8+ T-cell depletion. CONCLUSIONS: We provide preclinical evidence for a novel therapeutic strategy to enhance responsiveness of colorectal tumors to immune checkpoint inhibitors

    A Recursive Partitioning Analysis Demonstrating Risk Subsets for 8-Year Biochemical Relapse After Margin-Positive Radical Prostatectomy Without Adjuvant Hormone or Radiation Therapy.

    Get PDF
    PURPOSE: The cohort of patients with locally advanced prostate cancer (PC) and positive surgical margin(s) at radical prostatectomy (RP) who would benefit from salvage or adjuvant treatment is unclear. This study examines the risk of prostate-specific antigen (PSA) relapse in a large population of men with PC after margin-positive RP. METHODS AND MATERIALS: Using a multi-institutional database, patients with clinically localized PC who underwent RP between 2002 and 2010 with recorded follow-up PSA were retrospectively selected. Patients were excluded for pathologic seminal vesicle or lymph node involvement, metastatic disease, pre-RP PSA ≥ 30, or adjuvant (nonsalvage) radiation therapy or hormone therapy. The primary endpoint was biochemical relapse free survival (bRFS), where PSA failure was defined as PSA > 0.10 ng/mL and rising, or at salvage intervention. The Kaplan-Meier method was employed for bRFS estimates; recursive partitioning analysis using cumulative or single maximal margin extent (ME) and Gleason grade (GG) at RP was applied to identify variables associated with bRFS. RESULTS: At median follow-up of 105 months, 210 patients with positive margins at RP were eligible for analysis, and 89 had experienced PSA relapse. Median age was 61 years (range, 43-76), and median pre-RP PSA 5.8 ng/mL (1.6-26.0). Recursive partitioning analysis yielded 5 discrete risk groups, with the lowest risk group (GG1, ≤ 2 mm ME) demonstrating a bRFS of 92% at 8 years compared with the highest risk group (GG3-5, ≥ 3 mm ME) of 11%. CONCLUSIONS: This retrospective study suggests that it may be possible to risk-stratify patients undergoing margin-positive RP using commonly acquired clinical and pathologic variables. Patients with low-grade tumors and minimally involved margins have a very low recurrence risk and may be able to forego postprostatectomy radiation. Meanwhile, those with higher grade and greater involvement could benefit from adjuvant or early salvage radiation therapy

    Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic

    Get PDF
    Zoledronate (Zol) is a third-generation bisphosphonate that is widely used as an anti-resorptive agent for the treatment of cancer bone metastasis. While there is preclinical data indicating that bisphosphonates such as Zol have direct cytotoxic effects on cancer cells, such effect has not been firmly established in the clinical setting. This is likely due to the rapid absorption of bisphosphonates by the skeleton after intravenous (i.v.) administration. Herein, we report the reformulation of Zol using nanotechnology and evaluation of this novel nanoscale metal-organic frameworks (nMOFs) formulation of Zol as an anticancer agent. The nMOF formulation is comprised of a calcium zoledronate (CaZol) core and a polyethylene glycol (PEG) surface. To preferentially deliver CaZol nMOFs to tumors as well as facilitate cellular uptake of Zol, we incorporated folate (Fol)-targeted ligands on the nMOFs. The folate receptor (FR) is known to be overexpressed in several tumor types, including head-and-neck, prostate, and non-small cell lung cancers. We demonstrated that these targeted CaZol nMOFs possess excellent chemical and colloidal stability in physiological conditions. The release of encapsulated Zol from the nMOFs occurs in the mid-endosomes during nMOF endocytosis. In vitro toxicity studies demonstrated that Fol-targeted CaZol nMOFs are more efficient than small molecule Zol in inhibiting cell proliferation and inducing apoptosis in FR-overexpressing H460 non-small cell lung and PC3 prostate cancer cells. Our findings were further validated in vivo using mouse xenograft models of H460 and PC3. We demonstrated that Fol-targeted CaZol nMOFs are effective anticancer agents and increase the direct antitumor activity of Zol by 80-85% in vivo through inhibition of tumor neovasculature, and inhibiting cell proliferation and inducing apoptosis

    Intra-fraction motion of pelvic oligometastases and feasibility of PTV margin reduction using MRI guided adaptive radiotherapy

    Get PDF
    PurposeThis study assesses the impact of intra-fraction motion and PTV margin size on target coverage for patients undergoing radiation treatment of pelvic oligometastases. Dosimetric sparing of the bowel as a function of the PTV margin is also evaluated.Materials and methodsSeven patients with pelvic oligometastases previously treated on our MR-linac (35 Gy in 5 fractions) were included in this study. Retrospective adaptive plans were created for each fraction on the daily MRI datasets using PTV margins of 5 mm, 3 mm, and 2 mm. Dosimetric constraint violations and GTV coverage were measured as a function of PTV margin size. The impact of intra-fraction motion on GTV coverage was assessed by tracking the GTV position on the cine MR images acquired during treatment delivery and creating an intra-fraction dose distribution for each IMRT beam. The intra-fraction dose was accumulated for each fraction to determine the total dose delivered to the target for each PTV size.ResultsAll OAR constraints were achieved in 85.7%, 94.3%, and 100.0% of fractions when using 5 mm, 3 mm, and 2 mm PTV margins while scaling to 95% PTV coverage. Compared to plans with a 5 mm PTV margin, there was a 27.4 ± 12.3% (4.0 ± 2.2 Gy) and an 18.5 ± 7.3% (2.7 ± 1.4 Gy) reduction in the bowel D0.5cc dose for 2 mm and 3 mm PTV margins, respectively. The target dose (GTV V35 Gy) was on average 100.0 ± 0.1% (99.6 – 100%), 99.6 ± 1.0% (97.2 – 100%), and 99.0 ± 1.4% (95.0 – 100%), among all fractions for the 5 mm, 3 mm, and 2 mm PTV margins on the adaptive plans when accounting for intra-fraction motion, respectively.ConclusionA 2 mm PTV margin achieved a minimum of 95% GTV coverage while reducing the dose to the bowel for all patients

    Greco-2: A randomized, phase 2 study of stereotactic body radiation therapy (SBRT) in combination with rucosopasem (GC4711) in the treatment of locally advanced or borderline resectable nonmetastatic pancreatic cancer

    Get PDF
    Background: While treatment of pancreatic cancer has advanced, survival rates remain low. Stereotactic body radiotherapy (SBRT; high dose per fraction radiation) may exhibit improved clinical outcomes in locally advanced pancreatic cancer but carries potential gastrointestinal toxicity risks. Rucosopasem (GC4711) is one of a class of investigational selective dismutase mimetics that rapidly and specifically converts superoxide to hydrogen peroxide. Studies have shown that normal cells tolerate hydrogen peroxide fluxes better than cancer cells. As radiation response modifiers, dismutase mimetics have the potential to increase tumor control of SBRT without compromising radiation safety. In a pilot phase 1/2 trial in patients with pancreatic cancer, avasopasem, a dismutase mimetic related to rucosopasem, nearly doubled median overall survival in patients receiving SBRT vs placebo plus SBRT. Improvements versus placebo were also observed in local tumor control, time to metastases, and progression-free survival. Altogether, these data support the hypothesis that rucosopasem may improve survival and the benefit-risk ratio of SBRT by improving efficacy without increasing gastrointestinal toxicity. Methods: GRECO-2 is a phase 2, multicenter, randomized, double-blind, placebo-controlled study (NCT04698915) to determine the effect of adding rucosopasem to SBRT on overall survival in patients with borderline resectable or locally advanced, unresectable nonmetastatic pancreatic cancer following initial chemotherapy with a FOLFIRINOX-based regimen or a gemcitabine doublet. Approximately 160 patients will be randomized (approximately 35 sites) to receive rucosopasem 100 mg or placebo via IV infusion over 15 minutes, prior to each SBRT fraction (5 x 10 Gy). Patients judged to be resectable will undergo surgical exploration within 8 weeks after SBRT. The primary endpoint is overall survival. Secondary endpoints include progression-free survival, locoregional control, time to metastasis, surgical resection rate, RO resection rate, best overall response, in-field local response, and safety (acute and late toxicities). Exploratory endpoints include PRO-CTCAE and CA19-9 normalization

    CRLX101, a Nanoparticle–Drug Conjugate Containing Camptothecin, Improves Rectal Cancer Chemoradiotherapy by Inhibiting DNA Repair and HIF1α

    Get PDF
    Novel agents are needed to improve chemoradiotherapy for locally advanced rectal cancer. In this study, we assessed the ability of CRLX101, an investigational nanoparticle-drug conjugate containing the payload camptothecin (CPT), to improve therapeutic responses as compared to standard chemotherapy. CRLX101 was evaluated as a radiosensitizer in colorectal cancer cell lines and murine xenograft models. CRLX101 was as potent as CPT in vitro in its ability to radiosensitize cancer cells. Evaluations in vivo demonstrated that the addition of CRLX101 to standard chemoradiotherapy significantly increased therapeutic efficacy by inhibiting DNA repair and HIF-1α pathway activation in tumor cells. Notably, CRLX101 was more effective than oxaliplatin at enhancing the efficacy of chemoradiotherapy, with CRLX101 and 5-fluorouracil (5-FU) producing the highest therapeutic efficacy. Gastrointestinal toxicity was also significantly lower for CRLX101 compared to CPT when combined with radiotherapy. Our results offer a preclinical proof of concept for CRLX101 as a modality to improve the outcome of neoadjuvant chemoradiotherapy for rectal cancer treatment, in support of ongoing clinical evaluation of this agent (LCC1315 {"type":"clinical-trial","attrs":{"text":"NCT02010567","term_id":"NCT02010567"}}NCT02010567)

    Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy

    Get PDF
    Immunotherapy holds tremendous promise for improving cancer treatment1. Administering radiotherapy with immunotherapy has been shown to improve immune responses and can elicit an “abscopal effect”2. Unfortunately, response rates for this strategy remain low3. Herein, we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NPs formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent upon NP surface properties. We showed that AC-NPs deliver tumor specific proteins to antigen-presenting cells and significantly improve the efficacy of αPD-1 treatment using the B16F10 melanoma model, generating up to 20% cure rate as compared to 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+/Treg and CD8+/Treg ratios. Our work presents a novel strategy for improving cancer immunotherapy with nanotechnology

    Direct Observation of Early-Stage High-Dose Radiotherapy-Induced Vascular Injury via Basement Membrane-Targeting Nanoparticles

    Get PDF
    Collagen IV-targeting peptide-conjugated basement membrane-targeting nanoparticles are successfully engineered to identify early-stage blood vessel injury induced by high-dose radiotherapy
    corecore