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Abstract

1. Introduction

Nanomedicine, the application of nanotechnology to health and medicine, is a relatively new 

area of interdisciplinary science. The field involves a wide range of scientific disciplines, 

including physics, chemistry, engineering, biology, and medical science. The term 

nanomedicine can be traced back to the late 1990s and first appeared in research 

publications in the year 2000.1 Despite the wide adoption of the term nanomedicine, its 

definition varies among experts in this area.2 Some define nanomedicine broadly as any 

science that involves matters that are nanoscale. For example, the European Science 

Foundation in 2004 defined nanomedicine as “the science and technology of diagnosing, 

treating, and preventing disease and traumatic injury, of relieving pain, and of preserving 

and improving human health, using molecular tools and molecular knowledge of the human 

body”.2 While such a broad definition is all encompassing, it can be confusing. For example, 
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such a definition would include traditional scientific fields such as molecular biology as part 

of nanomedicine, because molecules such as nucleic acids and proteins are also nanoscale 

materials. However, scientists have been studying these molecules decades before the term 

nanomedicine was even coined, and their research generally does not take advantage of 

unique properties that only exist for nanomaterials. A narrower definition of nanomedcine is 

the application of nanoscale material in medicine that takes advantage of the nanomaterial's 

unique properties.1 This Review will adopt this narrower definition in our discussion of the 

clinical translation of nanomedicine.

Nanomedicine has made a rapid and broad impact on healthcare. Despite being only several 

decades old, research in nanomedicine has already led to the development of a wide range of 

products including therapeutics, diagnostic imaging agents, in vitro diagnostics, and medical 

devices. There are more than 200 nanomedicine products that have been either approved or 

are under clinical investigation.3 On the other hand, successful clinical translation is a 

challenging process. It requires extensive preclinical research, carefully selected clinical 

indication, proper design of clinical trials, and the successful completion of these trials. 

Mistakes in clinical translation can be unforgiving. Unlike preclinical research where there 

are many if not unlimited chances of generating a successful study, a single failed clinical 

trial can doom a drug's translation. Hay et al. recently showed that the eventual success rate 

of approval for therapeutics entering phase I trial is only about 10%.4 Because of this 

sobering statistic, it is important for translational researchers to fully understand the clinical 

translation process and to develop a successful translation strategy in the early stages of 

research.

As compared to diagnostics and devices, clinical translation of therapeutics is arguably the 

most challenging. The typical clinical translation path for a new drug starts with 

investigators generating robust preclinical data to demonstrate the safety and efficacy of the 

new drug to enable an investigational new drug (IND) application with the Food and Drug 

Administration (FDA).5 Once the FDA has approved the IND, the therapeutic will be 

evaluated in a first-in-human or a phase I clinical trial. The goal of such a study is to 

determine the safety profile and pharmacology of the drug. It will result in a dose and 

schedule for further clinical investigation, or the recommended phase 2 dose (RP2D). The 

typical phase I trial design used a “3 + 3” cohort expansion design.6 This design assumes 

toxicity increases with dose, and it aims to determine the dose level that has less than 1/3 

chance of a dose-limiting toxicity (DLT).7 In general, such a trial starts with a low drug 

dose. If none of the three patients receiving this dose experiences a DLT, another three 

patients will be treated at the next higher dose level. If one of the three patients experiences 

a DLT, then three more patients will be treated at the same dose level. Dose escalation 

continues until two patients among a cohort of three to six patients experience DLT. The 

RP2D is the dose level just below this level. Dose escalation typically follows a modified 

Fibonacci sequence where dose increments decrease as the tested dose increases. Other 

types of phase I designs include the accelerated titration designs, Bayesian models-based 

designs, and many others.7 Each design has advantages and disadvantages, and investigators 

have to choose the design that best fits the therapeutic.
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The goal of a phase II clinical trial is to examine the effectiveness of a drug or treatment. 

Secondarily, it will acquire more data on the toxicity and tolerability of the therapeutic. 

Therapeutics will progress to phase III clinical investigation only if they can demonstrate 

efficacy in phase II. The designs of phase II trials are either single-arm trials or randomized 

trials.8 Single-arm trials are cheaper, require fewer patients, and are typically easier to 

accrue. However, the outcome is less reliable as there is no comparison/control arm, and 

data are more susceptible to bias. Data from randomized phase II trials are more predictive 

of phase III results. However, it requires more patients and can be more difficult to accrue. 

Randomized phase II trials do not replace phase III investigations. Although they are 

randomized, patients are generally stratified on the basis of very few variables, such as age, 

sex, and disease status in phase II trials to keep the accrual goal low. Randomized phase III 

trials stratify patients on the basis of a large number of variables, which leads to less bias 

and more robust data. Because of the stratifications, the sample size required for phase III 

investigation is much higher than that of randomized phase II trials.

The goal of randomized phase III trials is to demonstrate that the investigational treatment is 

more effective than the “gold standard” treatment. In general, phase III data are required for 

FDA approval. However, in select cases where there are robust data and unmet clinical 

needs, conditional approval can be granted on the basis of phase II data or interim phase III 

data. The FDA has a range of programs to speed up the approval process, including 

accelerated approvals and the recent “break through therapy” designation.9

There is a “short-cut” to FDA approval for agents that are based on already approved drugs. 

This pathway is called the 505(b)(2) pathway. The process of timeline for 505(b)(2) is much 

more abbreviated when compared to a typical approval process. For nanomedicine, this 

pathway will typically require that the exact nanoparticle platform is already approved with 

another agent and the drug being delivered by the nanoparticle is also approved. Past 

examples of this include the approval of liposomal bupivacaine with the DepoFoam 

liposome platform.

The FDA was granted the authority to regulate medical devices in 1976.10 The approval 

process for medical devices is very different from that of drugs. First, for devices that 

predate May 28, 1976, these devices can remain on the market without needing approval. 

For the devices entering the market after that date, they are classified into different classes 

(I, II, and III) on the basis of their risks (Table 1).10 Class I devices are of low risk and are 

generally exempt from premarket notification (referred to as 510(k)) and may even be 

exempt from compliance with the good manufacturing practice requirement. Class II devices 

typically will require 510(k) submission before marketing. Class III devices are subject to 

the most stringent regulatory controls. Their approval will require a premarket approval 

(PMA) application. The 510(k) pathway is for devices that can be compared to existing, 

legally marketed “predicate” devices. The new device needs to be shown to be at least as 

safe and as effective as the “predicate” device. For devices that do not have a “predicate” 

device with which to compare, they are classified as class III and will need PMA. PMA 

needs to include scientific evidence that the device is safe and effective for its intended use. 

Unlike therapeutics where approvals generally require large randomized studies, scientific 

evidence for devices can include randomized controlled trials, single-arm studies, well-
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documented case series, and reports of significant human experience. For new devices that 

pose significant potential risks, an investigational device exemption (IDE) application is 

required prior to clinical investigation. Overall, the approval process is much simpler for 

devices than for therapeutics.

In this Review, we will examine preclinical evidence, chosen clinical path to translation, and 

clinical data of clinically approved nanomedicine products. We will also discuss the clinical 

data on nanomedicines that are under clinical investigation or failed clinical translation. 

Each of these clinical nanomedicine products has a unique clinical translation story. By 

examining this body of evidence, we aim to formulate important concepts that are keys to 

nanomedicine's clinical translation and to identify challenges. Such concepts will facilitate 

the translation of future nanomedicine products.

2. Liposome and Lipid-Based Nanomedicine

The liposome was the first nanoparticle platform in nanomedicine. Because the lipid bilayer 

is a core component of cell membrane structure, research interest in phospholipid membrane 

systems began early and predates the field of nanotechnology. As early as 1965, Bangham et 

al. described “swollen phospholipid systems” in their study on ion diffusion. Initially 

described as “multilamellar smectic mesophases” and sometimes referred to as 

“banghasomes”, 11 the term “liposomes” was eventually proposed by Gerald Weissmann, a 

visitor to Alec Bangham's laboratory, in 1968.12 Soon after the description, liposomes were 

utilized in drug delivery for both small molecules as well as protein drugs.13,14 In the 

following four decades, research in liposome and lipid nanoparticle drug delivery led to the 

development of the first FDA approved nanomedicine, DOXIL, as well as 12 additional 

therapeutics.15 Moreover, there are 30 liposomal or lipid nanoparticle-based therapeutics 

currently under clinical investigation.

Liposomes have several favorable properties as drug delivery vehicles. First, they can 

deliver both hydrophobic and hydrophilic molecules.15 The core of liposomes is 

hydrophilic, which can be used to encapsulate hydrophilic therapeutics. Between the 

liposome's lipid layers, there is also a hydrophobic domain, which can be utilized for the 

delivery of hydrophobic molecules. Second, liposomal delivery changes the biodistribution 

and pharmacokinetics of the therapeutic cargo. Such effects can improve therapeutic 

efficacy as well as reduce toxicity. Third, liposomes can protect its therapeutic cargo from 

the in vivo environment, which can improve the stability of the therapeutic. Last, for 

therapeutics needing to avoid the lysosomal pathway, such as gene therapy agents, 

liposomes can be engineered to escape lysosomes and deliver their cargo into the cytosol.16

2.1. Liposomal Anticancer Drugs

Gregoriadis was one of the first to demonstrate the liposome's ability to deliver 

therapeutics.17 He also recognized that the liposome's unique properties may improve the 

therapeutic index of cancer chemotherapy with cytotoxic drugs. To translate the liposome as 

a clinical drug carrier, further information on its biodistribution and pharmacokinetics was 

needed. In 1973, Gregoriadis et al. conducted a first-in-man (FIM) study with liposomes 

containing 131I-labeled human serum albumin in three cancer patients.18 In addition to 
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typical pharmacokinetic information obtained from plasma, the investigations were able to 

obtain tissue biopsies (one from necropsy 5 days post injection and one from surgical biopsy 

3 h after injection) to calculate tissue biodistribution. The study showed that the dose to the 

liver is higher than that of normal tissue (Table 2). It is important to note that such human 

studies are no longer possible due to the improved, more stringent guidelines of clinical 

studies. This small FIM study inspired intense efforts in translating liposome as drug 

delivery vehicles. Despite strong interests from both academia and industry, it was not until 

two decades later (2/1995) that the first liposome therapeutic (DOXIL, Janssen Products, 

L.P.) was approved by the FDA.

2.1.1. Liposomal Doxorubicin—Doxorubicin, a member of the anthracycline class of 

chemotherapeutics, was the first therapeutic evaluated for liposome delivery. As one of the 

first chemotherapeutics for cancer, doxorubicin was utilized against a wide range of cancers, 

including breast, lung, gastric, ovarian, sarcoma, myeloma, leukemias, and lymphomas.19–21 

Its wide use made it an attractive candidate for liposomal delivery. More importantly, 

doxorubicin is known to cause severe cardiotoxicity, which is dose-dependent and 

cumulative.22–24 Because of the liposome's favorable biodistribution properties, 

investigators hypothesized that liposomal delivery could improve doxorubicin's therapeutic 

index.

The first published phase I trial on liposomal doxorubicin evaluated a “first generation” 

formulation where the liposome was approximately 300–500 nm in size, with doxorubicin 

intercalated in the lipid bilayer.25 32 patients, most of them with liver cancer refractory to 

treatment, were given escalating doses (20-120 mg/m2) of liposomal doxorubicin on a 3-

week intermittent schedule. The maximum tolerated dose (MTD) was found to be 120 

mg/m2, with all three patients at this dose level experiencing grade 4 leukopenia and 

neutropenic fever. While the MTD of this formulation of liposomal doxorubicin is higher 

than that of free doxorubicin (75 mg/m2) in the every 3 week schedule, the investigators 

recognized several issues that would prevent the clinical translation of this formulation.26 

Pharmacokinetic and biodistribution studies showed that liposomal doxorubicin, despite the 

higher administrated dose, provided lower peak levels of free drug.27 The liposome was also 

too large and caused rapid clearance by the reticuloendothelial system (RES) or the 

mononuclear phagocytic system (MPS). Around the same time as this phase I trial was 

conducted, preclinical research showed that large liposomes are unable to escape capillaries, 

and they are rapidly cleared from circulation.28 This challenged the field of liposome 

research and translation to identify better and clinically translatable formulations.

Another phase I trial was conducted by Rahman et al. using a different formulation of 

liposomal doxorubicin.29 The trial used a 3 + 3 design with a starting dose of 30 mg/m2. The 

dose escalations were 45, 60, and 90 mg/m2. A total of 14 patients were enrolled, and the 

MTD was found to be 60 mg/m2. Dose-limiting hematologic toxicity occurred at 60 and 90 

mg/m2 with all 5 patients at 90 mg/m2 experiencing neutropenia. Two patients experienced 

hypersensitivity reactions during infusions, which resolved with medication. One patient 

received a total of 885 mg/m2 of doxorubicin but did not have any cardiotoxicity. 

Pharmacokinetic analysis showed liposomal doxorubicin had higher AUC (area under the 

curve) than that of free doxorubicin.
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On the basis of the FIM data from first generation liposomes, Gabizon and Farenholz and 

their colleagues further improved the liposomal doxorubicin formulation. Key changes 

included the polyethylene glycol (PEG) surface to create a “stealth” liposome that is not 

easily detected by the RES system.26 Another major improvement was remote loading to 

improve doxorubicin loading within each liposome.30 The first clinical investigation of this 

improved formulation (which eventually became the approved DOXIL) was conducted in 

Israel from 1991 to 1994.31 The primary end-point of this study was to understand the 

pharmacokinetics of DOXIL. A total of 16 patients were enrolled in this trial. The study had 

an unusual design as it had two study arms instead of one. Seven patients in the first arm 

received free doxorubicin first, followed by a second course of DOXIL. Two doses were 

studied: 25 and 50 mg/m2. In the second arm of the study, nine patients received DOXIL 

upfront. In addition to standard plasma pharmacokinetic studies, patients with malignant 

effusions were tapped and the doxorubicin concentration was quantified. This study 

demonstrated that DOXIL had significantly higher AUC when compared to free 

doxorubicin. DOXIL also had a much smaller volume of distribution (4 L) as compared to 

that of free doxorubicin (254 L). The clearance of DOXIL was also significantly slower than 

doxorubicin. These data are consistent with the macromolecular/nanoparticle nature of 

liposomal formulation. More interestingly, DOXIL resulted in 4–16-fold higher drug 

concentration in malignant effusions as compared to that of free doxorubicin (Figure 1). 

This observation was one of the first to support the enhanced permeability and retention 

(EPR) effect of nanoparticles.

As DOXIL entered the clinical investigation phase, Kaposi's sarcoma (KS) was becoming a 

common disease due to the epidemic of acquired immunodeficiency syndrome (AIDS).32 

There was a strong need for an effective treatment for this AIDS complication. The DOXIL 

development team recognized this need and realized that positive clinical trial data would 

result in rapid approval of DOXIL for this illness. There was also clinical evidence to 

support the use of DOXIL in this disease, as doxorubicin is utilized in combination 

chemotherapies for KS.33 A phase I/II trial was therefore conducted by James et al. to 

evaluate the safety and efficacy of DOXIL in AIDS-related KS.34 Patients began treatment 

with 10 mg/m2 every 2 weeks. If there was no clinical response, the dose was escalated to 20 

mg/m2 for two cycles before maintenance therapy (10 mg/m2). Complete response (CR) was 

defined as no detectable disease, and partial response (PR) was defined as 50% or greater 

decrease in tumor. A total of 15 patients were assessed in this first publication. 11/15 (73%) 

had PR, and the remaining had stable disease. No patients experienced a DLT in this study. 

In a separate phase II study, 21 patients with AIDS-related KS were treated with 20 mg/m2 

DOXIL every 2 weeks.35 The patients were stratified in low-risk and high-risk groups based 

on visceral involvement, >25% mucocutaneous KS, progression on interferon alfa, 

Karnofsky score, symptoms, and CD4 counts. PR was defined as a 50% or greater decrease 

in the perpendicular diameters of the tumors. Stable disease was defined as no measurable 

change in five indicator lesions. Ten evaluable patients were in each risk group. All of the 

low-risk patients had PR. Nine of the high-risk patients had PR and 1 had stable disease. 

Myelosuppression was the most common adverse event. A third phase II trial was reported 

in 1995. 34 patients with AIDS-related KS were enrolled (1991–1993) and treated with 20 

mg/m2 DOXIL every 3 weeks. All patients had poor prognosis disease. The overall response 
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rate was 73.5% with 67.7% PRs and 5.8% (2/34) CRs. Median duration of response was 9 

weeks. The primary toxicity was hematologicneutropenia (34%), progressive with each 

cycle. The collective positive evidence of DOXIL in AIDS-related KS resulted in the FDA 

accelerated approval of DOXIL for treatment of chemotherapy-refractory KS in 1995.36 The 

approval had a phase IV commitment of conducting a randomized trial between DOXIL and 

DaunoXome (liposomal daunorubicin).

The accelerated approval of DOXIL for KS was further supported by two randomized phase 

III trials. One of the studies was conducted by the International Pegylated Liposomal 

Doxorubicin Study Group.37 241 patients with AIDS-related KS were randomized between 

DOXIL (20 mg/m2) and the combination of bleomycin (15 mg/m2) and vincristine (1.4 

mg/m2) (BV). Both treatments were given every 3 weeks. Stratifications included prior KS 

treatment, KS stage, tumor burden, and CD4 count. 121 patients received DOXIL and 120 

received BV. The response rate for DOXIL was 58.7% as compared to 23.3% for that of BV 

(p < 0.001). BV was less well-tolerated by patients, with more adverse events and fewer 

patients completing the full 6 cycles of treatment. A second study compared DOXIL (20 

mg/m2) to a combination of doxorubicin (20 mg/m2), bleomycin (10 mg/m2), and vincristine 

(1 mg/m2) (ABV).38 Unlike the prior trial, treatments were given every 2 weeks for 6 cycles. 

This trial randomized 258 patients between the arms, with 133 in the DOXIL arm. The 

overall response rate of DOXIL was 45.9% as compared to 24.8% for the ABV arm (p < 

0.001). There was no difference in overall survival (OS). DOXIL was also found to be better 

tolerated than ABV treatment. Together, these two studies demonstrated that DOXIL leads 

to higher response rates than standard chemotherapy regimens, and it is better tolerated in 

KS. However, there was no overall survival benefit.

The phase IV commitment “A Double-Blind, Randomized Evaluation of Clinical Benefits of 

DOXIL in Patients with AIDS-Related Kaposi's Sarcoma Treated with DOXIL or 

DaunoXome” was designed in close collaboration with the FDA and initiated in 1996. The 

study enrolled 80 patients, and accrual was slow due to the introduction of highly active 

antiretroviral therapy (HAART) in 1996. The study eventually met accrual in 2000. While 

the final results of this study were not published, it was presented as abstract and discussed 

in reviews as well as detailed in the FDA application for full approval by Johnson and 

Johnson.39 The results suggested that DOXIL had higher response rates than DaunoXome. 

However, despite the phase III and IV data, the FDA did not give regular approval due to 

concerns that HAART has confounded the clinical results. The prospect of regular approval 

improved when a Spanish group published a study comparing DOXIL + HAART vs 

HAART.40 It found that DOXIL + HAART provided significantly higher response for KS 

than HAART alone (76% vs 20%). However, the company was unable to obtain the detailed 

data from this study to support the supplemental new drug application (sNDA) filing of 

DOXIL for KS. By then (2005), HAART therapy had transformed the AIDS epidemic, and 

any further randomized trial for KS would be extremely difficult to conduct, which the FDA 

also recognized. On the other hand, DOXIL was the already preferred treatment for KS, and 

the decreasing incidence of KS resulted in no further pursuit of approval for KS.

Since the accelerated approval of DOXIL for KS, the drug was studied in a number of other 

indications, including ovarian cancer, sarcoma, glioblastoma, lung, and breast cancer. Three 
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phase II studies showed promising results for DOXIL in ovarian cancer. Muggia et al. 

reported a phase II trial of pegylated liposomal doxorubicin (PLD/DOXIL) for the treatment 

of platinum and paclitaxel resistant ovarian cancer.41 A total of 35 consecutive patients were 

enrolled from two institutions. Patients received 50 mg/m2 of PLD every 3 weeks. In the 

event of grade 3–4 toxicities, dose was reduced to 40 mg/m2. The overall response rate was 

25.7% and median progression-free survival (PFS) was 5.7 months. Significant side effects 

included erythrodysesthesia (hand-foot syndrome) and stomatitis. The results were very 

encouraging in this treatment resistant population. In a separate phase II trial, Goron et al. 

also evaluated PLD for platinum and paclitaxel resistant ovarian cancer.42 In this trial, PLD 

was given at 50 mg/m2 every 4 weeks. 89 patients were enrolled in this study. The overall 

response rate was 16.9%, and median time to progression was 19.3 weeks. A third trial was 

conducted by Markman et al. in platinum/paclitaxel-refractory ovarian cancer.43 This study 

used a PLD dose of 40 mg/m2 every 4 weeks to avoid erythrodysesthesia and stomatitis. 49 

patients were enrolled in the study and the response rate was 9%. Less toxicity was observed 

in this study as compared to the previous two. In 1998, DOXIL received orphan drug 

designation and a sNDA was filed shortly after. In 1999, the FDA granted accelerated 

approval to DOXIL for treatment-refractory ovarian cancer based on the three phase II 

studies and the interim data from the then ongoing randomized, noninferiority phase III 

study comparing DOXIL and topotecan. The phase IV commitment was to complete this 

randomized phase III trial. In this study, the PLD dose was 50 mg/m2 every 4 weeks and the 

topotecan dose was 1.5 mg/m2 daily for 5 days every 3 weeks.44,45 Patients were stratified 

on the basis of response to initial platinum therapy and presence of bulky disease. The 

primary end point of the study was total time to progression (TTP) with secondary end 

points of overall response rate (ORR), response duration, overall survival, and safety. A total 

of 481 patients were enrolled from 1997 to 1999 at 104 sites in the U.S., Canada, and 

Europe. The results did not demonstrate superiority in TTP. However, long-term follow-up 

showed a survival benefit for the PLD arm. (Figure 2). On the basis of the positive survival 

data, PLD was given regular approval for ovarian cancer. It is important to note that overall 

survival was only a secondary end point in this study. A second randomized phase III trial 

was initiated in 2002 to compare carboplatin versus carboplatin+PLD (Southwest Oncology 

Group SWOG S0200). Unfortunately, the study was closed early due to poor accrual.46 

With only 61 patients, the final results showed no significant impact on survival, but there 

were fewer hypersensitivity reactions to platinum when PLD was given concurrently. This 

trial had no impact on DOXIL approval.

The third approved indication for DOXIL was for the treatment of relapsed and refractory 

multiple myeloma (MM).47 The approval was primarily based on a randomized phase III 

trial comparing DOXIL + bortezomib as compared to bortezomib alone in patients with 

relapsed or refractory MM (DOXIL-MMY-3001). Patients were stratified on the basis of 

beta2-microglobulin and their response to prior treatment. Randomization was in a 1:1 

allocation.48 The primary end point was TTP, and the study was designed to detect an 

improvement of 6 months in median TTP. PLD was given at 30 mg/m2 every 3 weeks. The 

median TTP was 6.5 months for bortezomib alone and 9.3 months for combination treatment 

(p = 0.000004). The 15-months survival rate was 76% for combination treatment versus 

65% for bortezomib alone (p = 0.03). Combination treatment had higher toxicity.
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PLD has also been studied extensively in metastatic breast cancer (MBC).49 Three different 

randomized trials compared PLD to either free doxorubicin or other regimens. One 

randomized phase III trial directly compared PLD to conventional doxorubicin in MBC 

patients.50 PLD was given at 50 mg/m2 every 4 weeks and free doxorubicin was given at a 

dose of 60 mg/m2 every 3 weeks. Primary end points were (1) noninferiority of PFS for 

PLD as compared to doxorubicin and (2) cardiotoxicity rates in the two arms. A total of 509 

patients were enrolled and randomized. The investigators found similar rates of PFS and 

survival. Cardiotoxicity was significantly higher in the conventional doxorubicin arm 

(Figure 3). However, the rate of palmar-plantar erythrodysesthesia was much higher with 

PLD (48%) than doxorubicin (2%). These results led to the European Union (EU) approval 

of PLD (Caelyx/DOXIL) for MBC patients who are at increased cardiac risk. The other two 

randomized trials, one comparing PLD to capecitabine, the other comparing PLD to 

vinorelbine or mitomycin+vinorelbine, also showed no survival benefits for either PFS or 

OS.49,51 The lack of benefit in terms of efficacy prevented PLD being approved for MBC in 

the U.S., although it is not uncommon to see DOXIL being used off-label in this patient 

population, especially if there is a concern for cardiotoxicity.

Following the expiration of the DOXIL patent, there was a recent worldwide shortage of the 

drug due to closure of the sole supplier of the drug to Johnson and Johnson. It is worth 

noting that regulations surrounding patents and intellectual property of nanoparticles are 

quite complex and can result in protection after expiration of the initial patent. This subject 

has been reviewed in detail by Burgess et al.52 As a result of the DOXIL shortage, 

alternative formulations such as Lipodox have been approved by the FDA for temporary 

importation. Lipodox is also pegylated and has pharmacokinetic properties similar to those 

of DOXIL.53

In addition to PLD, a nonpegylated liposomal formulation (LD) was also clinically 

translated (Myocet, Enzon Pharmaceuticals). Unlike PLD, which is around 100 nm, Myocet 

is approximately 190 nm and has a very different structure.54 Myocet has been approved for 

the treatment of MBC in the EU and Canada based on results from two randomized phase III 

trials. Chan et al. compared the combination of LD and cyclophosphamide (MC) with the 

combination of epirubicin and cyclophosphamide (EC) as first-line treatment for MBC.55 

The LD dose was 75 mg/m2 every 3 weeks. The primary end point was response rates. 166 

patients were enrolled and randomized. The response rates between the regimens were not 

different, although MC prolonged median time to treatment failure (5.7 vs 4.4 months, p = 

0.01). Neither arm showed significant cardiotoxicity. In a separate phase III trial (TLC 

D-99), LD monotherapy was compared to conventional doxorubicin in MBC.56 Both arms 

received 75 mg/m2 every 3 weeks. 224 patients were enrolled. The only difference between 

the arms were cardiotoxicity (13% vs 29%) in favor of LD. Median cumulative dose to 

cardiotoxicity was 785 mg/m2 for LD and 570 mg/m2 for doxorubicin (p = 0.0001).

Currently, there is a targeted formulation of liposomal doxorubicin under clinical 

investigation. MM-302 (Merrimack Pharmaceuticals) is a HER2-targeted LD. Its phase I 

results were reported in an abstract at the San Antonio Breast Cancer Symposium in 2012. 

The final results have not been published. The phase I trial found 50 mg/m2 to be the MTD. 

This drug is being studied in a randomized phase II trial with an unusual design: comparing 
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MM-302+trastuzumab to chemotherapy of physician's choice+trastuzumab in HER2-

positive MBC (NCT02213744). Target accrual is 250 patients.

Another liposomal formulation of doxorubicin under investigation is ThermoDox (Celsion 

Corp.). This liposome platform is thermo-sensitive and releases doxorubicin at elevated 

temperatures.57 ThermoDox has been studied in eight clinical trials but none has been 

reported. The largest study, a phase III study of ThermoDox plus radiofrequency ablation 

(RFA) vs RFA alone for nonresectable hepatocellular carcinoma (HCC), has completed 

accrual (NCT00617981). Although the results are not reported, the results of this trial were 

likely utilized to launch the currently active phase III randomized study evaluating 

ThermoDox with RFA in solitary HCC (3−7 cm) (NCT02112656). The drug is also being 

investigated for the treatment of liver metastasis, and breast cancer chestwall recurrence.

2.1.2. Liposomal Daunorubicin—Daunorubicin was the first anthracycline developed 

for cancer treatment.58 Other anthracyclines such as doxorubicin and epirubicin are derived/

synthesized from daunorubicin. For the same reasons that doxorubicin was a good candidate 

for liposomal delivery, there was also strong interest in the clinical translation of liposomal 

daunorubicin. The first clinical formulation of daunorubicin (DaunoXome, NeXstar 

Pharmaceuticals) was developed using a nonpegylated liposome platform.59 In a phase I 

trial in multiple tumor types, the investigators identified the MTD for liposomally 

encapsulated daunorubicin (LED) to be 100 mg/m2 for previously treated patients and 120 

mg/m2 for untreated patients. The DLT was neutropenia.

Similar to PLD, LED's first clinical indication was AIDS-associated KS. A phase I/II study 

of LED in KS enrolled 40 patients.60 The patients received doses of 10, 20, 30, and 40 

mg/m2 given once every 3 weeks, and 40, 50, and 60 mg/m2 given once every 2 weeks. The 

MTD was 60 mg/m2 given every 2 weeks. In the 22 patients who received 50 and 60 mg/m2, 

the investigators observed a response rate of 55%. These phase II data were further 

supported by a randomized phase III trial comparing LED to the ABV regimen.61 A total of 

232 patients were randomized to receive LED of 40 mg/m2 or ABV every 2 weeks. The 

ORR was not different between the arms (25% vs 28%), and neither was median survival or 

median time to failure. ABV caused more alopecia and neuropathy, whereas LED caused 

more neutropenia. The investigators concluded that LED is comparable to ABV for KS 

treatment. On the basis of these data as well as two other studies (unpublished), the FDA 

granted accelerated approval to DaunoXome for KS.62

As mentioned above, DaunoXome appeared to be less effective than DOXIL in a 

randomized head-to-head comparison. Because of the same difficulties that DOXIL faced in 

regular approval for KS, DaunoXome was also unable to obtain regular FDA approval for 

KS. In addition, despite evaluation in other cancers, DaunoXome has not shown superior 

efficacy over standard treatments, and hence has not been approved for other indications.

2.1.3. Liposomal Cytarabine—One of the unique features of liposomes is its long 

circulating time and slow drug release. The clinical translation of liposomal cytarabine 

(DepoCyt, DepoTech Corp.) takes full advantage of this liposomal characteristic. 

Cytarabine, also known as arabinofuranosyl cytidine (ara-C), is a chemotherapeutic 
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commonly utilized for leukemias and lymphomas. One of the complications of aggressive 

lymphomas and leukemias is meningeal involvement. Few treatments are effective in this 

setting. Among the few, intrathecal ara-C (delivering drug into cerebrospinal fluid (CSF)) is 

one of the options, but it is toxic and requires frequent administration.63 A liposomal 

formulation that has slow release may improve efficacy as well as safety of this treatment.

Unlike the previously mentioned liposomal drugs, liposomal cytarabine (LC) was developed 

using a multivesicular liposome platform.64 Multivesicular liposomes are larger in size and 

act as a drug depot. The particular platform used in liposomal cytarabine has been termed 

DepoFoam and was shown to be able to increase drug exposure in the CSF.65,66 The phase I 

study of LC was initiated in 1991.67 Nine patients were given 1–7 cycles of LC ranging 

from 25 to 125 mg. Drugs were administered via Ommaya reservoirs. LC was well tolerated, 

and it had a prolonged half-life as compared to that of cytarabine. 5/6 evaluable patients had 

clearing (free of tumor cells) of their CSF.

On the basis of the promising phase I trial, two randomized controlled trials were conducted 

comparing LC to cytarabine. The first study, which was a randomized, multicenter, 

multiarm study compared 50 mg of LC administered every 2 weeks to standard intrathecal 

cytarabine administered twice a week to patients with lymphoma or leukemia.68 28 patients 

were enrolled. The response rate for LC was 71% as compared to 15% for cytarabine (p = 

0.006). All of the LC patients were able to complete the treatment course, but only 53% of 

the cytarabine patients completed the regimen. Time to progression and overall survival 

trended in favor of LC. The second study was a randomized, multicenter, multiarm study 

involving a total of 124 treated patients with either solid tumors or lymphomas. Twenty-four 

patients with lymphoma were randomized and treated with LC or cytarabine. Patients 

received LC 50 mg every 2 weeks or cytarabine 50 mg twice weekly. Patients then received 

four maintenance cycles of LC or cytarabine 50 mg every 4 weeks. Similar to the first study, 

response rates were significantly higher in LC with 33% achieving CR as compared to 17% 

CR in the cytarabine arm. On the basis of the higher therapeutic efficacy and lower toxicity, 

DepoCyt received accelerated approval for lymphomatous meningitis.

CPX-351 (Celator Pharma) is dual agent liposomal formulation of both cyterabine and 

daunorubicin. The two drugs are maintained in a fixed 5:1 molar ratio, and multiple 

preclinical studies demonstrated promising efficacy against hematologic malignancies.69–71 

In this study, 48 patients with relapsed/refractory AML (acute myeloid leukemia) or high 

risk myelodysplasia were treated with increasing doses of CPX-351. The MTD was 

determined to be 101 u/m2 with dose limiting toxicities of hypertensive crisis, prolonged 

cytopenias, and congestive heart failure reported (all consistent with cyterabine and 

daunorubicin toxicity). Interestingly, they observed complete responses in 9/43 enrolled 

patients including 8 in patients with prior cyterabine and daunorubicin treatment. A second 

phase I study incorporated CPX-351 prior to busulfan and fludarabine conditioned stem cell 

transplant and found an MTD of 120 U/m2.72 With a median follow up of only 205 days, the 

1 year relapse free survival was achieved in 40% of patients.

Several phase 2 studies have since demonstrated promising efficacy of CPX-351. The first 

randomized 126 patients with newly diagnosed AML in a 2:1 fashion to CPX-351 (100 
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U/m2) versus traditional 7 + 3 therapy (continuous infusion cyterabine days 1–7 and IV 

bolus daunorubicin days 1–3).73 Overall response rates were higher in the CPX treated 

group (66.7% vs 51.2%). No differences in OS or EFS were observed for the whole group. 

CPX appeared to be particularly useful in secondary AML where the overall response rate 

was 57.6% versus 31.6% with a significant prolongation of the EFS in this subset of 

patients. While the efficacy was promising, toxicity was a problem. Recovery of cytopenias 

was longer in the CPX treated group (leukopenia recovery 37 vs 28 months), and there were 

more grade 3–4 infections in the CPX treated group. While not statistically significant, there 

was a trend toward higher infection-related deaths (3.5% vs 7.3%) and 60 day mortality 

(4.7% vs 14.6%) in the CPX treated group. A second phase II study randomized relapsed 

AML patients to CPX (100U/m2) versus physician preference chemotherapy.74 Patients 

were stratified into European Prognostic Index favorable, intermediate, and unfavorable risk 

groups. The primary end point was overall survival. There was no statistically significant 

improvement in OS (median 8.5 vs 6.3 months) for all patients, although OS was improved 

with CPX in the unfavorable risk patients. Several additional phase II studies are currently 

ongoing (NCT02286726, NCT02019069).

2.1.4. Liposomal Vincristine—Similar to liposomal cytarabine, liposomal vincristine 

(Marqibo, Spectrum Pharmaceuticals) is also approved for a rare condition and indication: 

adult patients with Philadelphia chromosome-negative (Ph-) acute lymphoblastic leukemia 

(ALL) in second or greater relapse.75

Marqibo is based on a nonpegylated liposome platform.76 Preclinical studies indicate the 

liposomal formulation of vincristine increases the MTD, circulation time, AUC, and 

therapeutic efficacy over vincristine. Its approval was based on a phase II study evaluating 

Marqibo in refractory adult Philadelphia chromosome-negative acute lymphoblastic 

leukemia.77 65 patients were enrolled in this multicenter, international trial. Vincristine 

liposome injection (VSLI) was given at 2.25 mg/m2 weekly until response, disease 

progression, toxicity, or pursuit of HSCT (hematopoietic stem cell transplantation). The 

primary end point was CR or CR with incomplete hematologic recovery (CRi). The CR/CRi 

rate was 20% and ORR was 35%. Median CR/CRi duration was 23 weeks, and 12 patients 

were able to bridge to HSCT. VSLI was reasonably well tolerated in this trial. The response 

rate (no survival benefit) led to accelerated approval (2012) for Marqibo. In a separate phase 

II trial, VSLI was evaluated in heavily pretreated patients with refractory non-Hodgkin's 

lymphoma (NHL). Patients received 2 mg/m2 every 2 weeks for a maximum of 12 cycles or 

until toxicity/disease progression.78 A total of 119 patients were enrolled on this trial. ORR 

was 25%, and 5% of patients achieved a CR. The data suggest that Marqibo may also be 

effective in treatment refractory NHL.

2.1.5. Liposomal Chemotherapeutics Undergoing Clinical Investigation—In 

addition to the above-mentioned approved liposomal chemotherapeutics, several others are 

under clinical investigation, including liposomal cisplatin, liposomal irinotecan, and 

liposomal docetaxel.

Cisplatin, like doxorubicin, is one of the most commonly utilized cancer 

chemotherapeutics.79 Its main limitation is toxicity, which includes neurotoxicity and 
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nephrotoxicity.80,81 There has been strong interest in developing nanoparticle formulations 

of cisplatin, including liposomal formulations.82 Liposomal cisplatin formulations that have 

entered clinical stage are listed in Table 3.

Without discussing the details of each clinical study, liposomal cisplatin generally reduces 

neurotoxicity but does not significantly improve therapeutic efficacy (response or survival 

end points).83,84 Because carboplatin has less nephrotoxicity, it is already viewed as the 

cisplatin alternative in renal impaired patients. Thus, successful clinical translation 

(approval) of liposomal formulations of cisplatin will require clear demonstration of efficacy 

end points.

Two liposomal formulations of irinotecan have also been developed and clinically 

evaluated. Both MM-398/PEP02 (Merrimack Pharmaceuticals) and IHL-305 use pegylated 

liposomes. Phase I of IHL-305 showed MTD and RP2D is 160 mg/m2 every 28 days.85 

DLTs were nausea/vomiting and diarrhea. Pharmacokinetic analysis showed high AUC for 

liposomal irinotecan. No phase II data have been published on IHL-305. MM-398 is much 

further along in its clinical development. It has been recently (in 2014) granted fast-track 

status for treatment of metastatic pancreatic cancer that has progressed on or following 

gemcitabine-based therapy. MM-398 was studied in metastatic pancreatic cancer first in a 

multinational phase II trial.86 40 patients with metastatic pancreatic cancer that progressed 

following gemcitabine-based therapy were enrolled. MM-398 was given at 120 mg/m2 every 

3 weeks as second-line treatment. The primary end point was 3-month OS. The investigators 

found that 7.5% of patients had an objective response and 42.5% had stable disease. 

Interestingly, 31.3% of the patients had a >50% decline of CA19-9, a pancreatic cancer 

biomarker. The 3-month OS rate was 75%. On the basis of this trial, a three-arm phase III 

trial (NAPOLI-1) was initiated randomizing patients to MM-398, 5-FU/leucovorin, and the 

combination of MM-398 and 5FU/leucovorin. The results were reported at the ESMO GI 

meeting in 2014 and showed that MM-398 + 5FU/leucovorin improved OS (6.1 months vs 

4.2 months), PFS, ORR, and CA19-9 response. These findings need to be confirmed upon 

the final publication of this trial. The reported improvement in survival end points is very 

favorable to the approval process of MM-398 for this indication. However, it is also 

important to note that a better trial design would have included a control arm of irinotecan 

and 5FU.

Liposomal paclitaxel and docetaxel have also been developed for clinical applications. 

Because taxanes are highly hydrophobic, it is typically delivered using polymeric 

nanoparticles (discussed later). However, it is possible to encapsulate docetaxel between the 

lipid-bilayer of liposomes. Two formulations of liposomal paclitaxel have been developed. 

Liposome-encapsulated paclitaxel (LEP-ETU, NeoPharm Inc.) has been evaluated in a 

phase I study.87 Its MTD was 325 mg/m2 with neuropathy as the DLT. Another liposomal 

formulation of paclitaxel, a cationic liposomal paclitaxel, is EndoTAG-1 (SynCore 

Biotechnology, partnered with Medigene).88 In a phase II trial, EndoTAG-1 plus 

gemcitabine appears to be superior to gemcitabine alone. Unfortunately, the clinical success 

of nab-paclitaxel (discussed in a later section) meant the end of clinical translation of these 

liposomal paclitaxel formulations. For liposomal docetaxel, a phase I trial evaluating 

liposomal-encapsulated docetaxel (LE-DT) was reported by Deeken et al.89 A standard 3 + 3 
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design was used in the study, and the RP2D was 85 mg/m2 without G-CSF and 110 mg/m2 

with G-CSF. The DLT was neutropenia. No phase II data are available for this therapeutic at 

this time.

Recently, Gabizon (see DOXIL) et al. developed a liposomal formulation of mitomycin C. 

The therapeutic is comprised of a mitomycin-C lipid-based prodrug formulated in pegylated 

liposomes (PL-MLP).90 It has been shown to be a safer and more effective treatment than 

mitomycin C in a number of tumor models.90,91 PL-MLP (Promitil, LipoMedix 

Pharmaceutical Inc.) is being studied in a phase I trial with expected completion date of June 

2015 (NCT017050020).

2.2. Liposomal and Lipid-Based Antibiotics and Antifungals

2.2.1. Liposomal and Lipid-Based Amphotericin B (Abelcet, Ambisome, 
Amphotec)—Amphotericin B (AmB) is one of the most effective therapeutics against 

fungal infections.92 However, its use and efficacy have been significantly limited by its 

severe and potentially lethal toxicities.93 It often causes an acute reaction after infusion (1–3 

h later) of high fever, chills, hypotension, as well as many other constitutional symptoms. 

Unlike many other drugs that can cause infusion reactions, premedication does not seem to 

significantly improve the outcome. Another significant toxicity is nephrotoxicity. It 

frequently causes elevation of creatinine, a measure of renal function. AmB cause acute 

tubular necrosis of the kidneys, and the mechanism of toxicity is at least partially due to 

direct cytotoxicity of the drug to the renal tubular cells. Because of its toxicities, AmB has 

earned a nickname of “ampho-terrible” among physicians and healthcare givers. More 

importantly, most physicians were reluctant to prescribe and administer this medication. 

These toxicities and need for better drug delivery make AmB a perfect drug for liposome/

lipid drug delivery.

There are three clinical liposomal/lipid formulations of AmB: Abelcet (Sigma-Tau 

Pharmaceuticals), AmBisome (Gilead Sciences, Inc.), and Amphotec (Sequus 

Pharmaceuticals). These three AmB formulations have very different structures (Figure 4) 

and pharmacokinetics (Table 4).92,94 Although all are comprised of lipids and AmB, 

Abelcet, also called AmB lipid complex (ABLC), has a ribbon-like structure, whereas 

Amphotec, also called AmB colloidal dispersion (ABCD), has a disk-like structure. 

AmBisome is the only formulation with a “true” liposome structure.

Abelcet was the first formulation to receive FDA approval (11/1995), missing the title of 

“first approved nanoparticle/liposomal therapeutic” by only 9 months. The preclinical 

studies to support its development were conducted by Juliano, Lopez-Berestein, and their 

colleagues.95–108 The first clinical experiences with ABLC were compassionate use of the 

drug in cancer patients at MD Anderson (where Juliano and Lopez-Berestein were 

faculty).109,110 In both small studies, cancer patients with fungal infections that were 

refractory to conventional AmB treatment were cured of their infections by ABLC (3/12 in 

one study and 8/9 in the other). A pharmacokinetics study in healthy male volunteers 

showed that ABLC had a lower AUC (area under the curve) than AmB's AUC.111 This is 

likely due to increased hepatic clearance rather than the increased volume of distribution that 

the investigators suggested.
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Many small phase II and III clinical studies have compared ABLC to amphotericin B in 

different fungal infections.94 In general, these studies found ABLC to have equivalent 

efficacy but significantly less toxicity (especially nephrotoxicity) than AmB.112–114 A 

randomized controlled trial compared ABLC to AmB in patients with candidiasis.94 It 

randomized 231 patients in a 2:1 design to either ABLC (5 mg/kg) or AmB (0.6–1 mg/kg). 

This study found response rates to be similar (63% vs 68%) but nephrotoxicity was 

significantly less in the ABLC arm. On the basis of the collective clinical data on ABLC 

demonstrating its efficacy in patients who are refractory or intolerant of AmB, Abelcet was 

approved for the treatment of invasive fungal infections in patients who are refractory to or 

intolerant of conventional AmB therapy.

Amphotec was the second amphotericin formulation that was approved by the FDA (1996). 

A phase I study of ABCD in bone marrow transplant patients enrolled 75 patients. It found a 

MTD of 7.5 mg/kg.115 At this dose level, there were minimal infusion-related toxicities and 

no observed nephrotoxicity. Unlike ABLC, which has lower AUC than AmB, the 

pharmacokinetics study of ABCD found it to have a higher AUC than AmB.116 Moreover, 

ABCD has a longer elimination half-life than AmB. This is consistent with the smaller size 

of ABCD (compare to ABLC), which leads to less RES uptake and clearance.

Several randomized studies compared ABCD to AmB. A randomized, double-blind trial 

compared the two therapeutics in patients with neutropenic fever.117 213 patients were 

enrolled to receive either ABCD (4 mg/kg) or AmB (0.8 mg/kg). Treatment responses were 

similar in the two arms (50% for ABCD and 43.2% for AmB). However, the ABCD arm had 

significantly less infusion-related reactions and nephrotoxicity. In a separate trial, 82 

patients with aspergillosis were given ABCD, and the results were compared retrospectively 

to 261 patients who were treated with AmB.118 The response rate for ABCD was higher 

than that for AmB (48.8% vs 23.4%). Fewer ABCD patients developed renal dysfunction as 

compared to AmB patients (8.2% vs 43.1%). Combined with other open label studies 

demonstrating that ABCD is effective and less toxic than AmB in treating aspergillosis, the 

FDA approved Amphotec for the treatment of invasive aspergillosis in patients who have 

failed or are intolerant of AmB. Following the approval, a double-blind, randomized study 

comparing ABCD to amphotericin B in invasive aspergillosis enrolled 174 patients.119 The 

therapeutic response was similar in both arms (52% vs 51%), but renal toxicity was lower in 

the ABCD arm (25% vs 49%).

AmBisome is the only “true” liposomal AmB (LAmB), and its pharmacokinetics reflects the 

formulation differences.120 LAmB results in a Cmax and AUC that were 8–10-fold higher 

than that of AmB, respectively. These values are also significantly higher than those of 

ABLC and ABCD. Importantly, LAmB had a significantly lower volume of distribution, 

which generally translates into lower normal tissue exposure. The pharmacokinetics 

differences are shown in Table 4.

LAmB was studied in several clinical indications, including empiric therapy for presumed 

fungal infection in neutropenic fever patients, treatment of cryptococcal meningitis in HIV 

patients, fungal infections that are refractory to or intolerant of AmB, and visceral 

leishmaniasis. As such, it eventually received FDA approval for all of the above 
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indications.121 There is a large body of clinical data on LAmB, which is impractical to 

review in detail here. In general, similar to ABLC and ABCD, AmBisome is significantly 

less toxic than AmB.122 However, LAmB did not demonstrate higher therapeutic efficacy of 

AmB in these studies. For example, two randomized studies comparing LAmB to AmB in 

neutropenic fever were reported by Prentice et al.123 A total of 134 adults and 204 children 

were randomized to AmB 1 mg/kg, LAmB 1 mg/kg, or LAmB 3 mg/kg. There was no 

significant difference in terms of efficacy between the arms, although the AmBisome arms 

had significantly lower nephrotoxicity as well as other drug-induced toxicities (2–6-fold 

reduction).

LAmB has also been compared directly to ABLC in patients with neutropenic fever.124 In 

this randomized, double-blind comparative trial, 244 patients were randomized to LAmB 3 

mg/kg, LAmB 5 mg/kg, and ABLC 5 mg/kg. While there was no difference in therapeutic 

efficacy, both LAmB doses were significantly less toxic than ABLC. Specifically, LAmB (3 

mg/kg/d and 5 mg/kg/d) had lower rates of fever (23.5% and 19.8% vs 57.7% on day 1; P < 

0.001), chills/rigors (18.8% and 23.5% vs 79.5% on day 1; P < 0.001), nephrotoxicity 

(14.1% and 14.8% vs 42.3%; P < 0.01), and toxicity-related discontinuations of therapy 

(12.9% and 12.3% vs 32.1%; P = 0.004). This is not surprising given the different 

pharmacokinetics of the two formulations. ABLC's drug release is more rapid, which is the 

likely cause of increased toxicity. This trial allowed AmBisome to include a claim of 

superior safety profile over Abelcet in its label.

Together, the three liposomal/lipid formulations of AmB are arguably the most successful 

nanotherapeutics to date, as they have largely replaced the use of AmB. This is despite the 

fact that none of the formulations have demonstrated superior efficacy over AmB, and they 

are much more costly.125 The wide adoption of liposomal/lipid formulations of AmB is 

based on safety and convenience of administration. Clinical AmB administration generated 

high anxiety in clinicians due its significant toxicity. It generally required high levels of care 

and monitoring after drug administration that lasted hours. In contrast, clinicians are able to 

administer liposomal/lipid formulations of AmB similar to other therapeutics without extra 

clinical monitoring. Although the clinical translation model of liposomal/lipid formulations 

of AmB is one to emulate, there are few therapeutics that possess the high toxicity profile of 

AmB.

2.2.2. Liposomal Antibiotics—Clinical formulations of liposomal antibiotics have been 

studied, but none have been approved. Gentamicin is a aminoglycoside antibiotic that is 

highly effective against Gram-negative organisms.126 Its main toxicities are ototoxicity and 

nephrotoxicity. A liposomal formulation of gentamicin (TLC-65) was studied clinically for 

the treatment of mycobacterium in AIDS patients.127 In this phase I/II study, patients were 

given escalating doses of liposomal gentamicin (1.7, 3.4, and 5.1 mg/kg). A total of 21 

patients received the treatment with the only significant toxicity being renal insufficiency (1 

patient). Blood mycobacterium colony counts decreased with treatment, suggesting 

therapeutic efficacy. However, this therapeutic did not succeed in its development program. 

Without published reports, it is unclear whether it failed due to lack of efficacy or lack of 

toxicity reduction.
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Another antibiotic, amikacin, has been formulated with liposomes, mainly for inhalation 

delivery for patients with cystic fibrosis (CF). The rationale for liposome delivery is to 

increase the half-life of amikacin.128 Liposomal amikacin (ARIKAYCE, Insmed Inc.) has 

been studied in a phase II trial, which enrolled 105 CF patients, for the treatment of 

Pseudomonas aeruginosa, one of the most common pathogens in CF.129 The trial used a 

randomized, double-blind, placebo-controlled design. The primary end point was safety and 

tolerability, and secondary end points were lung function, P. aeruginosa in sputum, and CF 

quality of life questionnaire. Subjects were randomized to once-daily ARIKAYCE (70, 140, 

280, and 560 mg; n = 7, 5, 21, and 36 subjects) or placebo (n = 36) for 28 days. The drug 

was found to be relatively safe with no difference in toxicity between experimental arms and 

placebo arms. The 560 mg dose group had improved lung function (FEV1) at days 28 and 

56 as compared to placebo (p = 0.033). Sputum P. aeruginosa also decreased more than one 

log in the 560 mg group when compared to placebo (p = 0.021). These data suggest that 

liposomal amikacin may be a viable treatment for CF.

2.3. Liposomal/Virosomal Vaccines

Liposome structure resembles viral envelopes, which are typically derived from host cell 

membranes. Taking advantage of this property, investigators incorporated viral membrane 

proteins or peptides into liposomes to formulate virosomes, and utilized these virosomes as 

vaccines.130 The advantage of virosomes is that they contain key viral proteins that can 

generate immune response, but they lack the genetic information on viruses that make them 

safe to administer. Another key advantage of virosomes lies in the fact that they contain low 

levels of ovalbumin and are thus less allergenic than traditional vaccines. Two virosome-

based vaccines have been approved for clinical use. Inflexal V (Crucell, Janssen 

Pharmaceuticals) is a virosome influenza vaccine that is formulated by incorporating 

hemaglutinin and neuraminidase, key influenza antigens, into liposomes.131 Since its 

introduction to clinical use in 1997, a large number of clinical trials have evaluated its safety 

and efficacy.132 Clinical data showed that it is safe and efficacious. In a direct comparison 

between Inflexal and a nonvirosome influenza vaccine, 453 children were randomized 1:1 

between the formulations.133 The seroconversion is similar between the arms except Inflexal 

has a higher seroconversion rate for the H3N2 strain (88.8% vs 78.3%). Inflexal is the only 

adjuvanted influenza vaccine that is approved for all age groups.

Epaxal (Crucell, Janssen Pharmaceuticals) is a virosome-based hepatitis A vaccine. It is 

formulated by adsorbing inactivated hepatitis A virus onto liposome surface.134 Clinical 

studies showed that a two-dose Epaxal regimen can lead to long-term (at least 9–11 years) 

protection against hepatitis A with a median duration of protection of 52.1 years.135 An even 

more impressive statistic is that >95% individuals will have protection for at least 30 years. 

The safety profile of this vaccine also appears to be excellent.136

2.4. Liposomal Anesthetics

The same DepoFoam platform used to deliver cytarabine (mentioned above) has also been 

used to deliver anesthetics. Liposomal formulations (DepoFoam) of morphine and 

bupivacaine have both been approved by the FDA. Liposomal morphine (DepotDur, Pacira 

Pharmaceuticals) has been approved for epidural administration for the treatment of pain 
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following major surgery. The fact that DepoFoam has been used in both the approved 

liposomal cytarabine and the approved liposomal morphine makes the translation path of 

DepotDur easier than most therapeutics. In a randomized, controlled, dose-ranging trial 

comparing extended-release epidural morphine (EREM/Depodur) to morphine, 441 patients 

were randomized to 1 of 6 epidural treatments.137 The treatments were single dose 5 mg of 

morphine sulfate (MS), 5 mg of EREM, 10 mg of EREM, 15 mg of EREM, 20 mg of 

EREM, and 25 mg of EREM. The primary end point was to compare the efficacy of single 

dose EREM at escalating doses (5, 10, 15, 20, and 25 mg) versus single dose MS 5 mg for 

postoperative pain management. At 48 h after treatment, significantly more single-dose 

EREM patients (13%) than MS patients (2%) had excellent pain control (defined as not 

requiring any IV fentanyl for breakthrough pain control) (p < 0.01). Moreover, patients in 

the single-dose EREM 15, 20, and 25 mg groups reported significantly lower pain-intensity 

scores and greater satisfaction with their pain relief. Further, EREM showed a typical dose–

response relationship with patients requiring the least breakthrough fentanyl in the 25 mg 

group (683 vs 982 and 985 μg fentanyl for 15 and 20 mg groups). In another study 

evaluating EREM for pain relief in total hip arthroplasty, 200 patients were randomized to 

receive 15, 20, or 25 mg EREM or placebo.138 All EREM groups had improved pain 

control, and 25% of EREM patients did not need supplemental analgesia (as compared to 

2% for placebo). DepoDur has been studied in a number of other surgical procedures such as 

cesarean section and colorectal surgery, and the results are similar to the above-mentioned 

studies, excellent pain control with less need for breakthrough pain medications.139

Liposomal bupivacaine (EXPAREL, Pacira Pharmaceuticals) is approved for administration 

into the surgical site for postsurgical analgesia. It is a treatment particularly helpful in 

patients who are intolerant of or at high risk of complications from opioids. In one study, 

bupivacaine extended-release liposome injection (BELI) was compared to placebo in 

patients undergoing hemorrhoidectomy in a randomized double-blind trial.140 BELI was 

found to reduce opioid pain medication use (opioid free from 12 h (59%) to 72 h (28%) after 

surgery as compared to patients receiving placebo (14% and 10%)). In a small phase IV 

health economic study, 27 surgical patients undergoing ileostomy reversal were followed 

and their pain management costs were calculated.141 BELI use was associated with less 

opioid use, shorter length of hospital stay (median, 3.0 days versus 5.1 days), and lower 

hospitalization costs ($6482 versus $9282, respectively; p = 0.01). These 

pharmacoeconomic considerations further illustrate the potential of controlled release 

anesthesia in postoperative analgesia.

2.5. Liposomal Verteporfin

Visudyne (Bausch and Lomb) is a liposomal formulation of verteporfin, a hydrophobic 

photosensitizer, which has been approved for the photodynamic treatment (PDT) of “wet” 

age-related macular degeneration.142 The rationale for liposomal delivery is because 

verteporfin is known to self-aggregate in aqueous environment, which can limit its 

bioavailability. Visudyne, combined with PDT, prevents the growth of the destructive blood 

vessels. In this treatment, patients are administered Visudyne through intravenous injection 

followed by light therapy (to the eyes). Two multicenter, double-blind, placebo-controlled, 

randomized trials compared Visudyne to placebo in patients with age-related macular 
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degeneration.143 A total of 609 patients were randomized 2:1 to Visudyne or placebo. The 

primary end point was proportion of eyes with fewer than 15 letters lost. At 12 months after 

the procedure, 246 (61%) of 402 eyes assigned to verteporfin ascompared to 96 (46%) of 

207 eyes assigned to placebo had lost fewer than 15 letters of visual acuity from baseline (p 

< 0.001). The Visudyne treatment group also had better visual acuity, contrast sensitivity, 

and angiographic outcomes (secondary end points). There were few adverse events 

associated with Visudyne treatment. On the basis of this result, Visudyne was approved for 

treatment of wet macular degeneration. The drug has also received orphan drug status for the 

treatment of central serous chorioretinopathy (CSC), a rare condition where serous fluid 

accumulates between the retina and the retinal pigment epithelium, causing retinal 

detachment.144 A recent randomized clinical trial compared two doses of Visudyne in 

CSC.145 This noninferiority trial attempted to demonstrate that 30% dose would be as 

effective as the 50% dose. However, noninferiority was not achieved and it found that the 

50% dose of Visudyne is superior to 30% dose. Importantly, it showed that PDT with 

Visudyne is an effective treatment for CSC. Visudyne has also been studied for the PDT of 

cancers, although it is unclear what the clinical translation path will be given PDT's limited 

role in cancer.146

2.6. Liposomal/Lipid Nanoparticle Delivery of Nucleic Acids

Liposome and lipid nanoparticle formulations are excellent delivery vehicles for nucleic acid 

therapeutics, such as gene therapy agents and small interfering RNAs (siRNAs).147 These 

nanoparticle formulations, especially cationic lipid formulations, protect the nucleic acid 

agents from degradation and can also facilitate their endosomal escape, a critical step in 

achieving success for nucleic acid therapeutics.

Several phase I clinical trials have evaluated liposomal (cationic) formulations of gene 

therapy agents. In one study, liposomal formulation of E1A gene therapy was injected into 

the thoracic or peritoneal cavity of 18 patients with advanced cancer of the breast (n = 6) or 

ovary (n = 12).148 The treatment was well tolerated with treatment-related toxicities of 

fever, nausea, and vomiting. Importantly, E1A expression was detected in tumor cells, 

indicating successful gene therapy. A separate phase I trial evaluating the same agent for 

intratumoral delivery in recurrent breast and head and neck cancers showed similar 

results.149 Another phase I study examined the delivery of p53 gene therapy in advanced 

solid tumors.150 The transferrin-targeted liposomal formulation was administered 

systemically in 11 patients. The treatment was well tolerated with only 1 patient 

experiencing serious side effects of chest pain and tachycardia.

Liposomes have also been used to deliver antisense therapeutics. Dritschilo et al. reported 

the results of a phase I study of liposomal c-Raf antisense in conjunction with radiotherapy 

in advanced cancer.151 17 patients who were receiving palliative radiotherapy were 

administered the agent. Side effects included mostly infusion reactions such as fever, chills, 

and dyspnea; these side effects were improved by premedication.

Recently, there has been strong interest in the clinical translation of siRNA therapeutics.152 

The most successful effort has been the lipid formulations of siRNA for the treatment of 

transthyretin amyloidosis. In a report of two phase I studies, two lipid nanoparticle 
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formulations, ALN-TTR01 and ALN-TTR02 (Patisiran, Alynlam Pharmaceuticals), were 

given to 32 patients with transthyretin amyloidosis (ALN-TTR01) and 17 healthy volunteers 

(ALN-TTR02).153 Infusion reactions were seen in approximately 20% of the patients. 

Although efficacy is not a key component of phase I studies, this trial showed provocative 

and exciting data. There was a rapid and dose-dependent lowering of transthyretin levels in 

both patient cohorts. For ALN-TTR02, the mean reductions in transthyretin levels ranged 

from 82.3% to 86.6% and reductions remained at 56.6%–67.1% at 28 days (p < 0.001). 

These data suggest high potential for therapeutic success of these agents. Several other 

RNAi (RNA interference) agents are also under clinical investigation, and these are listed in 

Table 5.154

3. Protein Nanoparticles

3.1. Nab-paclitaxel

The most successful protein nanoparticle therapeutic has been nanoparticle albumin-bound 

(Nab) formulation of paclitaxel (Nab-paclitaxel). ABI-007, marketed as Abraxane (Abraxis 

corporation), is an albumin-bound formulation of paclitaxel that is devoid of any solvents 

including Cremephor or ethanol. Paclitaxel is a naturally occurring compound extracted 

from the bark of the western yew tree, Taxus brevifolia.155 The mechanism of action is very 

well established and reviewed elsewhere.156,157 Paclitaxel is a widely used 

chemotherapeutic agent with FDA approval for the treatment of a number of different solid 

tumors including breast, lung, head and neck, gastrointestinal, and ovarian cancers.158

Small molecule paclitaxel has limited aqueous solubility. To improve solubility and in vivo 

delivery, paclitaxel was initially prepared as a Cremophor/ethanol-based (Cremophor EL, 

now marketed as Kolliphor EL) preparation (marketed as Taxol). There are several major 

drawbacks to Cremophor EL-based delivery systems. First, they are associated with a well-

described acute hypersensitivity reaction resulting in severe and sometimes fatal allergic or 

anaphylactic responses.159–161 These hypersensitivity responses have been observed in up to 

20–40% of patients.158 While premedication with steroids or antihistamines can reduce the 

frequency of hypersensitivity responses, severe and fatal reactions still occur. Second, they 

can form plasma micelles, which are capable of entrapping paclitaxel and other 

coadministered drugs such as anthracy-clines.162 Plasma trapping is problematic as it results 

in decreased drug clearance and decreased volume of distribution.163,164 The aqueous 

solubility of paclitaxel is so poor that it requires a very high concentration of Cremophor 

EL. In fact, the amount of Cremophor EL needed to deliver recommended doses of 

paclitaxel is higher than any other marketed drug, which results in plasma concentrations of 

up to 0.4% after a typical dose of 175 mg/m2.165 While Taxol is undoubtedly efficacious as 

a chemotherapeutic agent, the therapeutic index was clearly limited by its Cremophor EL 

delivery system, which increased toxicity.

There was a lot of interest in exploring alternative delivery methods to try to improve the 

clinical efficacy of paclitaxel, and a number of systems were explored. Perhaps the most 

logical, and by far the most successful of these, was the conjugation of paclitaxel to 

albumin. Albumin serves as a natural carrier protein for paclitaxel once in solution in the 

plasma. Conjugating paclitaxel to albumin prior to administration was a relatively 
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straightforward way of greatly enhancing its overall solubility and in vivo transport process. 

Abraxane is a formulation of 130 nm particles in the bottle, which rapidly dissociates into 

approximately 8 nm paclitaxel coated albumin molecules in the plasma.

Abraxane has a lower treatment volume and time required for administration. One of the 

first phase I trials of Abraxane involved 19 patients with solid tumor malignancies, which 

had failed standard therapy.166 Patients were treated every 3 weeks with increasing doses 

ranging from 135 to 375 mg/m2. Dose-limiting toxicities (including neuropathy, stomatitis, 

and superficial keratopathy) were observed in 3 out of 6 patients at the 375 mg/m2 group. 

Thus, the MTD was determined to be 300 mg/m2, which was significantly higher than the 

175 mg/m2 range reported for Cremophor-EL paclitaxel. Importantly, not a single acute 

hypersensitivity reaction was observed. Pharmacokinetic analysis showed that values of 

maximum concentration and area under the time–concentration curve increased linearly over 

the tested ranges and correlated very well with toxicity in individual patients.

An additional phase I study was completed by Nymen et al. utilizing a weekly treatment 

schedule (3 weekly doses of drug followed by 1 week of rest per cycle).167 This study 

included 39 patients with advanced solid tumor malignancies. Patients were treated with 

Abraxane weekly at doses ranging from 80 to 200 mg/m2. Pretreatment to reduce 

hypersensitivity reactions was not recommended in this study. Treatment was relatively well 

tolerated. Major toxicities were again hematologic and peripheral neuropathy, and 33% of 

patients tolerated at least 6 cycles of therapy. MTDs were 100–150 mg/m2, depending on 

previous chemotherapy and radiation treatments. In patients with heavy pretreatment 

(defined as >6 cycles of previous anthracycline, irradiation of >25% of bone marrow, etc.), 

no DLTs were seen at 80 or 100 mg/m2, whereas 2 episodes of grade IV neutropenia 

occurred at 125 mg/m2. In patients with light pretreatment, there were two episodes of grade 

III peripheral neuropathy observed after 6 or 7 cycles of Abraxane 125 mg/m2, but this was 

controlled with dose reduction. There were also 2 episodes of grade III neuropathy after just 

2-3 cycles of 175 mg/m2, and the MTD was determined to be 150 mg/m2. This was 

significantly higher than the previously reported MTD of 80 mg/m2 for weekly dosed 

Cremophor EL-based paclitaxel. The authors also noted partial responses in five patients 

with breast, lung, and ovarian cancers, who had been previously treated with paclitaxel. The 

promising results of this and other phase I trials led to further clinical investigations in a 

number of different disease sites.

Subsequent preclinical and clinical studies demonstrated that Abraxane had greater 

antitumor efficacy than Cremophor EL-based paclitaxel. Mechanistic evidence to explain 

the increased efficacy of nab-paclitaxel was demonstrated well in preclinical work by Desai 

et al.168 They assessed antitumor activity, intratumoral paclitaxel accumulation using mice 

bearing human tumor xenografts of lung, breast, ovarian, prostate, and colon cancers treated 

with nab-paclitaxel or Cremophor EL-based paclitaxel. Nab-paclitaxel had significantly 

greater antitumor activity than Cremophor EL-based paclitaxel in most tumor types tested. 

This difference was most striking in breast (MX-1) and ovarian (SK-OV-3) xenografts. 

There were more tumor-free survivors (100% vs 20% for breast, 24% vs 0% for ovarian), 

and time to recurrence was significantly longer (103 vs 22 days for breast, 63 vs 26 days for 

ovarian) in the Nab-paclitaxel treated mice. Time to recurrence was also increased in 
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prostate (PC-3; 48 vs 26 days) and colon (HT29; 36 vs 26 days) cancer xenografts. They 

then measured intratumoral paclitaxel levels by treating animals bearing MX-1 tumors with 

tritium-labeled paclitaxel in both preparations and measuring tumor radioactivity at seven 

time points over 24 h. Following equal doses of paclitaxel (20 mg/kg), intratumoral 

accumulation was significantly higher in the nab-paclitaxel treated mice. Nab-paclitaxel had 

an absorption constant that was 3.3-fold higher than Cremophor EL-based paclitaxel (0.43 

vs 0.13/h), and the tumor area under the curve (AUC) was 33% higher in the Nab-paclitaxel 

treated tumors. Finally, they demonstrated that Nab-paclitaxel had significantly greater 

binding affinity and transcytosis in human endothelial cells than Cremophor EL-based 

paclitaxel. Fluorescent-labeled Nab-paclitaxel showed 9-fold greater binding of paclitaxel in 

human umbilical vascular endothelial cells, and transport across human lung endothelial 

cells was 4.2-fold higher than Cremophor EL-based paclitaxel. Transcytosis of Nab-

paclitaxel was indeed through active transport, as it was completely blocked by methyl-β-

cyclodextran, an inhibitor of caveolar-mediated transcytosis. Further, Cremophor-EL diluent 

decreased paclitaxel binding to both albumin and endothelial cells in a dose-dependent 

manner. These studies provided mechanistic evidence that Nab formulation can improve the 

therapeutic index of paclitaxel by decreasing toxicity and improve antitumor efficacy by 

improving intratumoral delivery.

3.1.1. Nab-paclitaxel in Metastatic Breast Cancer—Several clinical trials 

subsequently demonstrated the efficacy of Abraxane for the treatment of metastatic breast 

cancer. A phase II study by Ibrahim et al. included 63 women with metastatic breast 

cancer.169 Slightly more than one-half of the patients (48) had been treated with prior 

chemotherapy. Patients were treated with 300 mg/m2 Abraxane by intravenous infusion 

every 3 weeks without any premedication to prevent acute hypersensitivity reactions. 

Treatment was relatively well tolerated with expected paclitaxel toxicities of neutropenia 

(24% grade IV) and neuropathy (11% grade III). However, no severe hypersensitivity 

reactions were reported. Treatment appeared efficacious, as the overall response rate was 

64% in patients treated with first-line therapy and median time to disease progression was 

26.6 weeks.

The superiority of Abraxane to Cremophor EL-based paclitaxel in the treatment of 

metastatic breast cancer was established in a phase III randomized controlled trial in 

2005.170 This study randomized 460 patients with metastatic breast cancer who were 

candidates for single-agent paclitaxel. Eligible patients had to have received either no prior 

treatment with paclitaxel or docetaxel or not experienced relapse or progression within 1 

year of discontinuing paclitaxel or docetaxel in the past. Patients were randomized to 

Abraxane (260 mg/m2) without premedication or standard paclitaxel (175 mg/m2) with IV 

premedication every 3 weeks. Abraxane was more efficacious and had a more favorable 

toxicity profile than Cremophor EL-based paclitaxel. Overall response rates were 33% 

versus 19%. Time to progression was significantly longer in the Abraxane arm (23 weeks vs 

16.9 weeks). Time to progression was significantly longer in patients getting first-line 

therapy than second-line or greater therapy, and Abraxane increased the time to progression 

in both groups (24.0 vs 19.7 weeks for first-line, 20.9 vs 16.1 weeks for second-line or 

greater). Median overall survival was significantly higher with Abraxane than standard 

Min et al. Page 22

Chem Rev. Author manuscript; available in PMC 2016 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



paclitaxel in second-line or higher patients (56.4 vs 46.7 weeks) and trended toward 

improvement in first-line patients (65 vs 55.7 weeks). Treatment was relatively well 

tolerated in both groups with 97% and 93% of patients in both groups completing all 

planned doses without dose reduction or delays because of toxicity. Despite receiving a 49% 

greater average paclitaxel dose-intensity, there were no grade III acute hypersensitivity 

reactions in the Abraxane group as compared to 2% in the standard paclitaxel group. 

Further, there was significantly less grade IV neutropenia in the Abraxane arm (9 vs 22%). 

The higher dose intensity with Abraxane treatment did translate into a higher incidence of 

grade III neuropathy (10% vs 2%). However, these all improved to grade I or II with 

treatment interruption or dose-reduction. Overall, there were no measurable differences in 

quality of life between the two groups. On the basis of the results of this and above-

mentioned trials, the FDA approved Abraxane for the treatment of metastatic breast cancer 

in patients who have failed combination chemotherapy for metastatic disease or relapsed 

within 6 months of adjuvant therapy. As discussed below (Table 6), there are many more 

completed and ongoing clinical trials, to expand the approval of Abraxane for the treatment 

of breast cancer at virtually all disease stages including early stage operable disease.

3.1.2. Nab-paclitaxel in Non-Small Cell Lung Cancer (NSCLC)—Despite years of 

clinical research and advances in systemic therapies, long-term survival in locally advanced 

and metastatic lung cancer is exceedingly poor with 5 year overall survival rates of less than 

5%. Paclitaxel is efficacious in the treatment of lung cancer and frequently given in 

combination with other drugs, most commonly carboplatin.171,172 Given the encouraging 

results of improved efficacy and decreased toxicity as compared to Cremophor-EL 

paclitaxel, there was strong interest in investigating the use of Abraxane for the treatment of 

advanced NSCLC.

Green et al. conducted a single-arm phase II study investigating the efficacy and safety of q3 

week monotherapy Abraxane (260 mg/m2) in patients with inoperable, locally recurrent, or 

metastatic NSCLC.173 43 patients were enrolled, and 84% had visceral dominant disease. 

Monotherapy Abraxane showed promising efficacy, with ORR of 16.3%. Median time to 

progression was 6 months, and median overall survival was 11 months. Treatment was well 

tolerated, and 95% were treated per protocol without dose reduction or delays because of 

toxicity. Nine patients (21%) experienced a grade III toxicity, of which four were 

neutropenia and two were peripheral neuropathy. There were no grade IV toxicities. These 

results compared very favorably to previously published studies with single agent 

Cremophor EL-based paclitaxel.174

Rizvi et al. subsequently conducted a phase I/II study investigating the use of weekly single 

agent Abraxane in patients with inoperable advanced or metastatic disease.175 Patients could 

have received neoadjuvant or adjuvant chemotherapy but no prior systemic therapy for their 

metastatic disease. The dose escalation (100–150 mg/m2) portion of the study determined 

the MTD to be 125 mg/m2 after no DLTs were observed at 100 and 125 mg/m2; there were 

DLTs of febrile neutropenia and grade III neuropathy in 2 of 6 patients at 150 mg/m2. Forty 

patients were then enrolled on the phase II portion and treated with weekly Abraxane on 

days 1, 8, and 15 followed by a 1-week break. Of these, 77% had received no prior 

chemotherapy. The ORR was 30% with median time to progression of 5 months and median 
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overall survival of 11 months. Similar to previous studies, treatment was well tolerated. 85% 

of patients completed therapy as planned. There were no treatment-related deaths and only 

two episodes of grade IV toxicity (both neutropenia).

Looking to build on these favorable results, Socinski et al. then undertook a phase I trial 

investigating the feasibility of combining Abraxane with carboplatin.176 175 patients with 

stage IIIB or inoperable metastatic disease with no prior treatment for metastatic disease 

were enrolled. They were separated into seven cohorts of 25 patients each receiving 

different doses of weekly (100–140 mg/m2) or q3 week (225–340 mg/m2) Abraxane. 

Carboplatin (AUC = 6) was infused q3 weeks in all treatment arms. Treatment toxicity was 

an issue, but the combination of Abraxane and carboplatin was feasible. The most common 

toxicities were hematologic, and the most common nonhematologic toxicity was peripheral 

neuropathy. Overall, 22% of patients required discontinuation because of treatment-related 

toxicities without evidence of disease progression. In the weekly treatment arms, the 100 

mg/m2 dose was best tolerated as only two patients (8%) required discontinuation for 

treatment-related toxicities as compared to six patients and seven patients (24–28%) at the 

higher dose levels. In the q3 week arms, unacceptable toxicity rates ranged from 16% to 

44% (lowest in the 260 mg/m2 arm and highest in the 340 mg/m2 arm). ORRs ranged from 

24% to 56%, with higher ORRs seen in the weekly infusion arms (36–56%) than the q3 

week arms (24–40%). Notably, there was no dose–response relationship in either the weekly 

or the q3 week treatment arms. Maximal ORR was observed at 125 mg/m2 (weekly) and 225 

mg/m2 (q3 week) doses. Median PFS and OS ranged from 4.8–6.9 months and 8.3–15 

months, respectively. Neither differed by treatment schedule or showed a dose response 

relationship. However, when the investigators analyzed patients based on histology 

(squamous vs non-squamous), they observed significant and opposite differences. In patients 

with nonsquamous histology, weekly treatment was associated with a significant increase in 

PFS and OS of more than 2 months. However, q3 week treatment appeared to be better in 

patients with squamous histology as it was associated with a greater than 3 month increase 

in PFS and greater than 2 month increase in OS in that cohort of patients.

Following these results, Socinski et al. initiated a phase III trial seeking to demonstrate the 

superiority of Abraxane over Cremophor EL-based paclitaxel in combination with 

carboplatin for the treatment of advanced NSCLC.177 This trial randomized 1052 patients 

(521 to Abraxane and 531 to solvent based) with advanced (stage IIIB or IV) NSCLC to 

weekly Abraxane (100 mg/m2) with q3 week carboplatin (AUC = 6) versus standard of care 

q3 week Cremophor EL-based paclitaxel (200 mg/m2) with q3 week carboplatin (AUC = 6). 

By almost all metrics, Abraxane had superior efficacy over solvent-based paclitaxel. 

Radiographic and clinical ORR were significantly higher (33% vs 25% and 38% vs 30%, 

respectively) as were median PFS (6.3 vs 5.8 months) and median OS (12.1 vs 11.2 

months). By histology, Abraxane had a significantly higher ORR in squamous cell tumors 

(41% vs 24%), and equivalent ORR were observed in nonsquamous histologies (26% vs 

25%). Overall, the median number of cycles received was 6 in both treatment arms. Dose 

reduction for toxicity was required in 46% of the Abraxane arm and 23% of the Cremophor 

EL-based arm. Abraxane was associated with significantly fewer grade III or IV peripheral 

neuropathy (3% vs 12%) and neutropenia (47% vs 56%) but more anemia (27% vs 7%) and 

thrombocytopenia (18% vs 9%). Subjective measurements of taxane-associated toxicities 
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were assessed using a FACT-taxane assessment scale, and 94% of patients had follow up 

assessments. Abraxane was associated with significantly smaller changes from baseline for 

neuropathy, pain, and hearing loss as compared to Cremophor EL-based paclitaxel. On the 

basis of the results of this study, the FDA approved Abraxane in combination with 

carboplatin for the first-line treatment of patients with advanced NSCLC in October 2011. 

See Table 6 for further details on ongoing investigations.

3.1.3. Nab-paclitaxel in Pancreatic Cancer—Pancreatic exocrine carcinoma is one of 

the most lethal malignancies. In the metastatic setting, survival is generally less than 6 

months. As of 2011, gemcitabine was the only approved single-agent chemotherapy for the 

treatment of metastatic pancreatic cancer. However, median overall survival is still only 5.7 

months, with less than 20% 1-year survival rate. A number of phase III trials had tried 

different combination therapies with gemcitabine, but only the combination of gemcitabine 

and erlotinib showed a significant improvement in overall survival.178–182 The search for 

new combination therapies to improve survival continued. Molecular profiling of human 

pancreatic tumors suggested that nab-paclitaxel may be a rational selection as pancreatic 

tumors secreted high levels of the albumin-binding protein SPARC (secreted protein acidic 

and rich in cysteine). This protein is also overexpressed in breast and lung cancers, which 

respond favorably to nab-paclitaxel as described above. Van Hoff et al. initiated a phase I/II 

trial of gemcitabine (1000 mg/m2 on days 1, 8, 15, q28 days) in combination with Abraxane 

in patients with metastatic pancreatic cancer.183 Patients could have received prior 5-FU or 

gemcitabine as a radiosensitizer but not for metastatic disease and must have had at least 6 

months of stable disease following therapy before relapse or progression. 67 patients were 

enrolled on the dose-finding portion of the study (100, 125, or 150 mg/m2). DLT was 

observed in all three patients treated with 150 mg/m2 including one fatal infection, so 125 

mg/m2 was selected as the MTD. The clinical efficacy in patients treated at the MTD was 

very encouraging. Median PFS was 7.9 months with a median OS of 12.2 months, and 48% 

of patients were alive at 1 year. Tumor metabolic activity as measured by PET-CT scan was 

available for 55 patients. The median decrease in FDG activity after 12 weeks of therapy (4 

cycles) was 69%. Seventeen patients obtained complete responses on PET CT, and these 

patients had significantly increased median OS as compared to those with partial or no 

responses (20.1 vs 10.3 months). Survival was also significantly longer in those with high 

SPARC versus low SPARC expression (17.8 vs 8.1 months).

Within the same study, the authors also analyzed treatment responses, stromal content, and 

tumoral drug concentrations in 11 patient-derived xenografts. Gemcitabine monotherapy 

resulted in regression of 2 of 11 xenografts. Abraxane alone only induced regression in 4 of 

11 xenografts. However, the combination of gemcitabine and Abraxane caused regression in 

6 of 11 patient-derived xenografts. When they examined the stroma of two gemcitabine 

resistant tumors, they observed a profuse desmoplastic stroma. In contrast, treatment of 

these same tumors with Abraxane resulted in a decrease in desmoplastic stroma with an 

increase in the glandular density and increased endothelial cell content accompanied by 

dilated blood vessels. These rearrangements facilitated tumoral delivery of gemcitabine; 

intratumoral levels of gemcitabine increased 2.8-fold from approximately 2500 ng/g with 

gemcitabine alone to nearly 7000 ng/g with the addition of nab-paclitaxel.
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With these very promising clinical and preclinical data, these same authors then undertook a 

randomized phase III study of gemcitabine (1000 mg/m2 on days 1, 8, and 15) versus the 

same dose of gemcitabine with Abraxane (125 mg/m2) to demonstrate the clinical 

superiority of combination therapy over single agent gemcitabine.184 A total of 861 patients 

with metastatic pancreatic adenocarcinoma were randomized (431 to combination therapy 

and 430 to gemcitabine alone). Patients were not allowed to have had any prior cytotoxic 

doses of chemotherapy for metastatic disease. Combination therapy with Abraxane was 

clinically superior in terms of median OS (8.5 vs 6.7 months), 1 year OS (35 vs 22%), 2 year 

OS (9 vs 4%), and median time to progression (5.5 vs 3.7 months). Subgroup analysis 

demonstrated that risk of death appeared to be reduced in patients with markers of more 

aggressive disease including liver metastases, multiple sites of metastatic disease, and 

greatly increased CA19-9 levels. As for toxicity, there were 16 treatment related deaths (4%) 

in both arms, all secondary to sepsis. The most common grade III toxicities were 

hematologic and more frequently occurred in the combination therapy arm. This was most 

notable for neutropenia (38% vs 27%) and leukopenia (31% vs 16%). Nonhematologic 

toxicities were also more frequent in the combination group including peripheral neuropathy 

(17% vs 7% grade III). However, no grade IV peripheral neuropathy was reported in either 

group. Time to resolution to grade I or less was no longer in the combination therapy group. 

Overall, 41% and 47% of patients in the combination therapy group required dose 

reductions in Abraxane or gemcitabine (respectively). 33% of patients treated with 

gemcitabine monotherapy required a dose reduction. This study clearly demonstrated the 

clinical superiority of gemcitabine plus nab-paclitaxel as compared to gemcitabine alone 

with an acceptable increase in toxicity. On the basis of these results, the FDA granted 

approval for the combination of gemcitabine and Abraxane as first-line therapy for the 

treatment of advanced pancreatic cancer.

3.1.4. Additional/Ongoing Studies of Nab-paclitaxel—As detailed in Table 6, there 

are many ongoing trials examining the combination of Abraxane with other existing agents 

to expand the approved indications for Abraxane. Current early stage (phase I–II) clinical 

studies are investigating uses in all stages of breast cancer (early operable through 

metastatic) as well as a host of other primary cancers, including ovarian, lung, pancreatic, 

melanoma, GI, and GU cancers. Outside of breast cancer, the majority of these 

investigations are investigating use in advanced stage disease. There are also several 

ongoing phase III trials as detailed in Table 7. Given the previous successes with Abraxane 

in multiple different cancers, it seems likely some of these trials will prove successful, and 

new indications for Abraxane will be identified and granted.

3.2. Nab-rapamycin

The phosphatidylinositol-3-kinase (PI3-K)/AKT signaling cascade is intimately involved in 

tumor cell survival, proliferation, stress-response, and metabolism. The mammalian target of 

rapamycin (mTOR) protein is downstream of PI3-K and is a critical regulator of many of 

these processes.217 Inhibitors of mTOR, including rapamycin and its analogues (including 

everolimus and temsirolimus), are effective anti-tumor molecules used in the treatment of 

several solid tumor malignancies including breast, RCC, and neuroendocrine tumors.218–220 

Unfortunately, rapamycin is plagued by poor solubility, bioavailability, and significant 
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gastrointestinal side effects.221 Similar to cremophor in Taxol preparations, the solvents 

used to deliver mTOR inhibitors are associated with toxicity and acute hypersensitivity 

reactions.

Following the success of nab-paclitaxel, a nab formulation of rapamycin, ABI-009, was 

developed. This formulation produces NPs of approximately 100 nm in size. Preclinical data 

have been promising, and clinical studies are ongoing. One published study demonstrated 

cytotoxic effects of nab-rapamycin with perifosine in multiple myeloma cells.222 A phase I 

dose-finding study of q3 week ABI-009 in patients with advanced solid tumor malignancies 

was undertaken.223 Dose was escalated from 45 to 125 mg/m2. Treatment was overall well 

tolerated. Two grade III toxicities (suicidal ideation and hypophosphatemia) were seen at 

125 mg/m2. There is an ongoing phase I/II trial of ABI-009 for the treatment of BCG 

refractory or recurrent nonmuscle invasive bladder cancer (NCT02009332).

4. Polymer–Drug Conjugates

The use of biological molecules such as proteins or peptides as active agents is a well-

established therapeutic technique. Replacement of a deficient enzyme, such as adenosine 

deaminase in severe combined immunodeficiency (SCID), can reverse the toxic effects of 

metabolic disorders. Alternatively, the administration of active enzymes or proteins can have 

therapeutic effects. These can include growth factors (GM-CSF), hormonal antagonists 

(GNRH antagonists), active enzymes (arginine deaminase), and many other potential 

applications. However, the systemic administration of synthetic or exogenous drugs or 

biomolecules is often hampered by physical and biological limitations. The half-life of 

exogenous molecules in circulation is usually quite short for a number of reasons. Small 

molecules generally have rapid renal clearance. Enzymatic degradation is frequently an 

issue for proteins, peptides, and nucleic acids. Many proteins also induce immunogenic 

responses, which increase clearance rates. In addition to clearance issues, many therapeutics 

have significant systemic toxicities. Many compounds are poorly soluble and require the use 

of solvents, which themselves have well-established toxicities. In some instances, the most 

clinically significant acute reactions of some formulations are actually related to the solvents 

as opposed to the active drug.

Polymer–drug and polymer–protein conjugation has provided a successful solution to many 

of these issues and has resulted in improved delivery and clinical utility for a number of 

approved agents (Table 8). The most frequently utilized polymer has been polyethylene 

glycol (PEG), although others, such as polylactic acid (PLA), polygultamic acid, and N-(2-

hydroxypropyl) methacrylamide (HPMA), have been successfully utilized and moved into 

clinical trials.224,225 The conjugation of PEG (or other polymers) to a drug, protein, or 

peptide imparts a number of biological and pharmacological advantages for systemic 

delivery. Because polymers like PEG are hydrophilic compounds, they improve the 

solubility of conjugated agents and can eliminate the need for potentially toxic solvents. 

Conjugation greatly increases the size of the drug of interest, which can decrease exposure 

of nontarget tissues and decrease systemic toxicity. The increased mass also improves 

circulation times by decreasing renal clearance and primarily limiting the uptake of small 

molecules to the endocytic route. Polymer-conjugation can further increase circulation time 
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by decreasing immune-mediated clearance and enzyme-mediated degradation. Additionally, 

some polymer drug conjugates (such as CRLX-101 and polyglumex) can be used to form 

self-assembling nanostructures. As demonstrated in Table 8, polymer–drug conjugates have 

been successfully utilized and approved for the treatment of many different medical 

conditions. The literature supporting approved polymer–drug conjugates is quite large, and 

has been reviewed in detail many times before.226–230 We will discuss the clinical 

development of several of these newer compounds in more detail here.

4.1. Poliglumex Paclitaxel

Polyglutamic acid conjugated (poliglumex) paclitaxel is another NP formulation of 

paclitaxel. This formulation produces slow, controlled paclitaxel drug release by hydrolysis 

of ester bonds. Early preclinical studies were promising. Li et al. demonstrated that 

polyglutamic acid paclitaxel formulation potently diminished in vivo xenograft tumor 

growth.231 Mice bearing ovarian (OCA-1) xenografts received equal doses of paclitaxel (at 

the solvent-based MTD of 80 mg/kg) and demonstrated significantly greater delays in tumor 

growth with polyglutamic acid NP formulation than solvent-based preparation. Further, at 

the MTD of NP formulation (160 mg/kg), they observed complete tumor regression. In a rat 

primary mammary adenocarcinoma model (13762F), they observed complete tumor 

regression at the MTD of NP paclitaxel (60 mg/kg) and at lower doses (40 mg/kg). In 

contrast, at the MTD of solvent-based paclitaxel (20 mg/kg), they observed tumor growth 

delay, but not regression. NP administration caused significantly more tumor necrosis than 

solvent-based paclitaxel. Several other preclinical studies confirmed the improved efficacy 

and prolonged tumor paclitaxel concentration of polyglutamic acid-formulated paclitaxel as 

compared to Cremophor EL-based paclitaxel.232–235

Early clinical studies with poliglumex paclitaxel demonstrated unexpectedly high rates of 

toxicity. The first published phase I study involved seven patients with advanced solid tumor 

malignancies treated every 3 weeks with doses escalated from 235 to 275 mg/mg2.236 Grade 

III/IV neutropenia was seen in 2 of 5 patients at 235 mg/m2 and one-half of the patients (1 of 

2) at 275 mg/m2. More surprising were the rates and severity of peripheral neuropathy. Two 

out of seven patients developed grade III neuropathy, which persisted between 8 and 18 

months. A second phase I study also demonstrated DLTs of neutropenia and peripheral 

neuropathy and determined the MTDs of q3 week and q2 week administration were 266 and 

177 mg/m2, respectively.237

Commercially available forms of polyglutamic acid paclitaxel, initially under the trade name 

Xyotax, subsequently changed to Opaxio (CTI Biopharma), went on to be tested in a 

number of different clinical settings. Results in some sites were disappointing, but others 

have appeared very promising and phase III studies are currently ongoing.

Several studies in NSCLC patients with Xyotax have been completed. In contrast to 

Abraxane, the results of clinical trials of Xyotax in patients with advanced NSCLC were 

disappointing. Richards et al. performed a single-arm phase II study of Xyotax as first-line 

treatment for patients with advanced or metastatic NSCLC.238 Twenty-six patients were 

treated with 175 mg/m2 on a q3 week dose regimen. Toxicity was tolerable as there were 

only two events of grade IV neutropenia (neither febrile) and only three patients experienced 
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grade III peripheral neuropathy. Response rates were modest as there were only two patients 

with a partial response (7%) and transient stable disease was achieved in 57% of patients 

with a median duration of 9 weeks.

Three subsequent phase III trials failed to consistently demonstrate a benefit of Xyotax as 

compared to standard therapies for advanced NSCLC. The first randomized 849 patients 

with advanced NSCLC previously treated with platinum-based chemotherapy to either 

Xyotax (175 or 210 mg/m2) or docetaxel (75 mg/m2).239 There were no differences in 

median OS (6.9 vs 6.9 months). Time to progression was also unchanged (2 vs 2.6 months). 

The toxicity profile was different but not necessarily more favorable with Xyotax. NP 

formulation was associated with less grade III/IV neutropenia or febrile neutropenia, but it 

was associated with more grade III peripheral neuropathy and more patients in the Xyotax 

arm had dose reductions or discontinued therapy because of toxicity. A subsequent trial by 

O'Brien et al. randomized chemotherapy naïve patients with advanced NSCLC and a 

performance status of 2 (poor performance status) to single agent Xyotax (175 mg/m2) or 

single-agent venorelbine or gemcitabine.240 Grade III/VI hematologic toxicity was reduced 

in the Xyotax arm (2–3% vs 8–10%). Peripheral neuropathy was more common in the NP-

paclitaxel arm but was limited to 3% of patients in that arm. There was no difference in 

median OS (7.3 vs 6.6 months). Finally, Langer et al. attempted to demonstrate superior 

survival of carboplatin plus Xyotax over carboplatin plus solvent-based paclitaxel in 

advanced NSCLC patients.241 Patients in the NP paclitaxel + carboplatin group had 

significantly less alopecia, arthralgias, myalgias, and cardiac events. However, they had 

more grade III/IV neuropathy and hematologic toxicity. Further, there were no differences in 

median PFS (3.9 vs 4.6 months) or OS (7.9 vs 8 months). The results of these trials were 

largely disappointing, and interest in the use of polyglutamic acid conjugated paclitaxel for 

lung cancer has largely subsided. There is a completed phase II study investigating the 

combination of Xyotax (Opaxio) and pemetrexed (NCT00487669) in advanced NSLC 

patients, and results are pending. Otherwise, there are no ongoing trials in the lung cancer 

setting.

Ovarian cancer is a disease for which improvements in the therapeutic ratio of paclitaxel 

may be particularly useful. The management of epithelial ovarian cancer includes a 

combination of paclitaxel and platinum (generally carboplatin).242 Despite intensive 

therapy, long-term survival for ovarian cancer remains quite poor and treatment can be fairly 

toxic. There has been excitement that the use of NP formulated paclitaxel could lead to 

improved outcomes for patients with ovarian cancer.

Several phase I studies have demonstrated the feasibility of polyglutamic acid NP 

formulated paclitaxel with platinum drugs. Nemunaitis et al. conducted a phase I study of q3 

week CT-2103 (Xyotax) (175–250 mg/m2) with carboplatin (AUC 5-6) in 22 patients with 

treatment refractory advanced solid tumors.243 The only observed grade IV toxicity was 

neutropenia, which was seen in nine patients. Several patients had significant 

thrombocytopenia, which was attributed to carboplatin and resolved with dose reduction of 

carboplatin. No patients required dose reductions of Xyotax, and the MTD was determined 

to be 225 mg/m2. Three patients demonstrated partial responses on this therapy. 

Interestingly, all three of these patients had advanced ovarian cancer, which had previously 
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failed taxane therapy. Another study treated 44 patients with advanced solid tumors with q3 

week cisplatin (75 mg/m2) in combination with Xyotax and made similar observations.244 

Combined therapy was relatively well tolerated, and they observed partial responses in nine 

patients.

Morgan et al. conducted a Gynecologic Oncology Group (GOG)-sponsored phase I study of 

patients with chemotherapy naïve ovarian, peritoneal, or fallopian tube carcinoma.245 All 

patients were postsurgical but optimal resection was not required. All patients were treated 

with q3 week carboplatin (AUC 6) and poliglutamex paclitaxel. The first 11 patients were 

involved in a dose finding study. Dose was initially 225 mg/m2. However, two out of three 

patients at this dose experienced grade IV neutropenia, and the dose was reduced to 175 

mg/m2 and then to 135 mg/m2 when two of five patients also had grade IV neutropenia. No 

DLTs were observed in the three patients treated at 135 mg/m2, and this dose was then used 

in the feasibility study. Twenty patients then completed the feasibility study. Hematologic 

toxicity was significant but manageable. 95% (19 of 20) of patients experienced grade IV 

neutropenia, but only three of these lasted longer than a week or involved febrile 

neutropenia. There were three cases of grade II and only one case of grade III peripheral 

neuropathy. Overall, 16 of 20 patients completed 6 cycles of therapy. Response to therapy 

was encouraging. Of the 20 patients treated, 16 had measurable CA-125 and 10 had 

measurable disease at the start of chemotherapy. There was one radiographic complete 

response and three partial responses. In terms of CA-125, 75% of patients had complete 

responses, and the remaining 25% had partial responses to therapy. A subsequent phase II 

study from the GOG in recurrent/persistent ovarian or primary peritoneal cancers 

demonstrated that q3 week single agent-poliglumex paclitaxel had some efficacy in tumors 

that were taxane or platinum resistant.246 One additional phase II study involving patients 

heavily pretreated with prior chemotherapy demonstrated promising efficacy but higher than 

expected (15%) grade III peripheral neuropathy.247 There is currently an ongoing GOG 

(GOG-0212) phase III trial comparing the efficacy of maintenance Taxol versus poliglumex 

paclitaxel or observation in patients who have an initial complete response to taxane + 

platinum therapy (NCT00108745).

Polyglutamic acid conjugated paxlitaxel NPs have also shown clinical promise as 

radiosensitizers. Chemotherapeutics are frequently used in combination with radiation to 

improve the efficacy of radiation. The combined use of radiation with chemotherapy has 

improved clinical outcomes in a number of diseases including head and neck cancer, rectal 

cancer, and esophageal cancer. Radiation causes cell killing principally through the 

generation of oxidative damage to cellular structures including DNA. The concurrent use of 

cytotoxic agents can render cells even less capable of surviving the toxic effects of radiation. 

Unfortunately, traditional drug delivery methods do not preferentially deliver drug to 

tumors. Normal tissue cells are also exposed to drug and are rendered more sensitive to 

radiation, which results in increased normal tissue toxicity. This lack of tumor specific drug 

delivery has largely limited the clinical translation of radiosensitizers. NP drug delivery 

offers several advantages over traditional drug delivery, which positions these agents well to 

improve the clinical utility of concurrent chemoradiation. First, NPs preferentially 

accumulate in tumors and not normal tissues because of irregular tumor vascularity and 

relative lack of lymphatic drainage. Second, the slow, controlled drug release with NP 
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formulation can work synergistically with radiation to improve the efficacy of radiation-

induced toxicity.

Preclinical work by Li et al. demonstrated the potential advantage of NP polyglutamic acid 

formulation of paclitaxel.248 Mice bearing OCa-1 xenografts were treated with free or NP 

paclitaxel 24 h after tumor irradiation. Paclitaxel potentiated the effects of radiation and 

improved tumor growth delay in both formulations. However, at equal doses (60 mg/kg) 

tumor growth delay was significantly longer following the administration of NP formulated 

drug than free drug. As compared to radiation alone, the enhancement ratios (tumor growth 

following radiation and drug treatment/tumor growth following radiation only) for NP 

formulated and free paclitaxel were 4.4 and 1.6, respectively. They confirmed the improved 

antitumor efficacy at several doses of radiation (5–15 Gy). They further demonstrated that 

irradiation increased tumor vasculature permeability (via extravasation of Evens blue dye), 

which correlated with increased uptake of tritiated paclitaxel following treatment with NP 

formulated drug. A second preclinical study confirmed that polyglutamic acid-conjugated 

paclitaxel was a potent radiosensitizer to both single and fractionated radiotherapy in mouse 

xenograft models.249 This study further demonstrated NP paclitaxel did not increase 

radiation-induced hair, skin, or jejunal toxicity (assessed with crypt survival assays). As 

expected, these preclinical studies demonstrated that NP formulation can improve the 

therapeutic ratio of paclitaxel chemoradiation.

A phase I study demonstrated the feasibility of weekly polyglutamic acid-conjugated 

paclitaxel NPs with concurrent radiation in patients with gastric and esophageal cancers.250 

This dose-finding study enrolled 21 patients. All patients were planned to receive 50.4 Gy of 

radiation. The initial dose of NP paclitaxel was 40 mg/m2 and was increased in increments 

of 10. Toxicities, as expected, included gastritis, esophagitis, and neutropenia. Dose-limiting 

toxicities were seen in three of four patients at 80 mg/m2 so the MTD was determined to be 

70 mg/m2. Efficacy appeared promising. Twelve of the patients were treated with concurrent 

therapy for control of loco-regional disease, and, of these, four achieved complete clinical 

responses.

Promising clinical results were also seen in a phase II study of polyglutamic acid NP 

paclitaxel concurrent with neoadjuvant cisplatin-based chemoradiotherapy for the treatment 

of localized esophageal cancer.251 Forty patients were treated with weekly NP paclitaxel (50 

mg/m2) and cisplatin (25 mg/m2) concurrent with 50.4 Gy of radiation followed by surgical 

resection. Treatment was very well tolerated. Grade III esophagitis, nausea, and fatigue 

occurred between 5% and 7% of patients. Three patients had complete clinical responses to 

chemoradiation and refused treatment. Of the remaining 37 patients, there were 12 

pathologic complete responses to neoadjuvant therapy.

A recent phase II study also attempted to combine polyglutamic acid NP paclitaxel with 

Temozolomide and radiation for the treatment of grade 3 or 4 gliomas.252 Twenty-five 

patients were treated with daily Temozolomide (75 mg) and weekly NP paclitaxel (50 

mg/m2) with daily radiation (6000 cGy in 200 cGy fractions). Seventeen of the patients had 

GBM, and the median PF and OS were favorable at 11.5 and 18 months. However, seven 

patients experienced grade IV neutropenia, and the duration of hematologic toxicity lasted 
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up to 5 months. The authors concluded that toxicity with combined Temozolomide and NP 

paclitaxel was unacceptably high. However, given the favorable PFS in GBM patients, there 

is currently an ongoing phase II trial of polyglutamic acid NP paclitaxel with concurrent 

radiation for the treatment of non-MGMT hypermethylated GBM (NCT01402063). Further, 

the FDA granted orphan drug status for Opaxio in the treatment of glioblastoma in 2012.

The above studies demonstrate the clear potential for the use of NP formulated paclitaxel as 

a radiosensitizer. There is an additional ongoing phase I/II trial investigating the 

combination of polyglutamic acid NP paclitaxel with cetuximab and concurrent radiation in 

patients with HPV negative SCC of the head and neck (NCT00660218).

4.2. PK1 and PK2

HPMA (N-(2-hydroxylpropyl) methylacrylamide) is another polymer that has been utilized 

for NP formulation. Two versions of HPMA-copolymer-doxorubicin have been developed 

and completed early phase clinical trials. The first, PK1 (Pfizer Inc.), is doxorubicin 

conjugated to HPMA by a Gly-Phe-Leu-Gly peptidyl linker. The peptidyl linker is very 

stable under physiologic pH but is effectively cleaved at low pH's following lysosomal 

uptake. This drug showed promising results in preclinical animal studies when compared to 

free doxorubicin.253–255 A phase I study including 33 patients with metastatic solid tumor 

malignancies showed the MTD to be 320 mg/m2.256 The dose-limiting toxicities were 

febrile neutropenia and mucositis. Interestingly, common anthracycline-specific toxicities 

such as cardiotoxicity were not observed despite cumulative doses of 1680 mg/m2. The 

plasma half-life was 93 h. Responses were seen in 4/36 patients. A phase II study involving 

62 patients with metastatic breast, NSCLC, or colorectal cancer treated patients with 280 

mg/m2 PK-1.257 The toxicity profile was quite favorable. There were no episodes of grade 

IV neutropenia, and there was no evidence of cardiotoxicity in any of the patients. However, 

the clinical efficacy was quite modest. In all, only 6/62 patients showed any clinical 

response to treatment. All six were partial responders, and all were chemotherapy naive at 

the time of enrollment.

PK2 (Pfizer Inc.) is a compound similar to PK1 except that it contains additional galactose 

residues to facilitate hepatic targeting. Preclinical work in rats demonstrated less 

cardiotoxicity with PK2 than free doxorubicin.258 A phase I study was completed, which 

included 31 patients with liver tumors (25 primary, 6 metastatic).224 Patients were treated 

with IV infusions every 3 weeks, and dose was escalated from 20 to 160 mg/m2. The dose-

limiting toxicities were again neutropenia and mucositis (in addition to severe fatigue). I123-

labeled polymer was also given to patients to measure biodistribution. 24 h following 

administration, 16.9% of the dose was targeted to the liver with 3.3% in the tumor. 

Targeting was not observed in particles lacking the galactose residues. The above studies 

demonstrate the potential for HPMA-conjugated drug–polymers to decrease the systemic 

toxicity of anthracyclines. To our knowledge, there are no ongoing studies with either PK1 

or PK2 at this time.
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4.3. CRLX101

Camptothecin is a promising anticancer drug, which works through the inhibition of 

topoisomerase 1. However, the clinical translation of camptothecin was initially limited by 

poor drug solubility, poor stability, and high rates of toxicity.259 To address these issues and 

improve clinical translation, efforts were made to generate a NP formulation of 

camptothecin. A cyclodextran-PEG copolymer conjugated to camptothecin has shown a lot 

of preclinical and clinical promise. Initially marketed as IT-101, this compound is now 

marketed under the trade name CRLX101 (Cerulean).

Many preclinical studies have been completed showing promising antitumor activity, 

prolonged drug release, and favorable toxicity profiles.260–263 Schluep et al. demonstrated 

that IT-101 had favorable pharmacokinetic and biodistribution profiles as compared to free 

and unconjugated camptothecin in mice bearing colorectal LS174T xenografts. Maximal 

AUC plasma concentrations of conjugated polymer were 100-fold higher than unconjugated 

or free drug, and the plasma half-life was increased from 1.3 to 17–20 h. Further, tumor 

concentrations of camptothecin were 160-fold higher in mice treated with conjugated drug. 

Conjugated drug was also more efficacious against several tumor lines in vitro as well as 

multiple lymphoma xenografts in vivo.

Feasibility in humans was established during an initial phase I/IIa clinical study of patients 

with heavily pretreated advanced solid tumor malignancies.264 Patients were initially treated 

with weekly escalating doses of CRLX101 (6, 12, or 18 mg/m2). Pharmacokinetic data 

suggested that biweekly dosing would be better tolerated, and dosing was switched to 

biweekly drug administration at doses of 12, 15, and 18 mg/m2. The most common toxicity 

was myelosuppression. Several patients treated with weekly drug experienced grade IV 

hematologic toxicity, whereas only one grade IV hematologic toxicity was observed with 

biweekly dosing. The MTD was determined to be 15 mg/m2 biweekly, and 44 patients were 

treated at this dose for the phase IIa portion of the study. CRLX101 showed some efficacy 

as 64% of patients had transiently stable disease with median time to progression of 3.7 

months. An additional study correlated CRLX101 treatment with decreased expression of 

multiple genes (including topoisomerase 1, Ki-67, VEGF, etc.) associated with decreased 

survival in multiple human tumors.265

A number of ongoing clinical trials are now trying to build upon the early preclinical and 

clinical success of CRLX101. There are phase I/II studies of CRLX101 in combination with 

bevacizumab in patients with advanced RCC (NCT01625936, NCT02187302) or recurrent 

ovarian/tubal/primary peritoneal carcinoma (NCT01652079). There is a two-arm phase II 

study comparing CRLX101 and topotecan for the treatment of recurrent small cell lung 

cancer (SCLC) (NCT01803269). Several studies are investigating CRLX101 as single 

agents in the treatment of advanced NSCLC (NCT01380769) or unresectable gastric or 

esophageal tumors (NCT01612546). Finally, there is also an ongoing phase I/II trial of 

neoadjuvant CRLX101 and capecitabine combined with concurrent radiotherapy for the 

treatment of advanced rectal cancers (NCT02010567). The phase I dose-finding studies have 

been completed, and phase II studies are currently ongoing.
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4.4. CRLX301

Cerulean, the same company that developed CRLX101, has also developed CRLX301, a 

polymeric nanoparticle conjugate of docetaxel (Taxotere). The company has undertaken 

preclinical studies looking at tumor responses of seven xenograft models of human cancers 

and reported greater inhibition of tumor growth in 5/7 tumor lines treated with CRLX301 

compared to Taxotere.266 Toxicity is also reduced in CRLX301 as compared to Taxotere. 

An Australian phase I/II trial in patients with treatment refractory advanced solid tumors is 

set to begin enrolling patients in the near future.

5. Polymeric Micelles and Nanoparticles

5.1. Polymeric Micelles

5.1.1. Genexol-PM—Genexol-PM (Sorrento Pharmaceutics) is a polymeric micelle 

formulation of paclitaxel devoid of Cremophor-solvent. This product is also marketed in 

several countries under the name Cynviloq. The biodegradable amphiphilic diblock 

copolymer is comprised of monomethoxy poly(ethylene-glycol)-block-poly(D,L-lactide) 

(mPEG-DDLLA). The first published preclinical study compared the in vivo toxicity, 

efficacy, and distribution of Genoxel-PM to Cremophor-based paclitaxel.267 Genoxel-PM 

was much less toxic as both the MTD and the LD50 were markedly increased in Genoxel-

PM as compared to solvent-based paclitaxel (60 vs 20 mg/kg and 205–221 vs 8.3–8.8 

mg/kg, respectively). Given at equal paclitaxel doses, there was no difference in the plasma 

AUC between the two formulations. However, Genoxel-PM treated animals had 2–3-fold 

higher paclitaxel concentrations in heart, lungs, kidneys, and spleen. Importantly, Genoxel-

PM also resulted in 2-fold higher levels of paclitaxel in tumors (B16 melanoma). Genoxel-

PM also showed more significant delays in growth of SKOV-3 and MX-1 tumor xenografts 

in vivo. These studies demonstrated Genoxel-PM, similar to Abraxane, is more efficacious 

and less toxic than solvent-based paclitaxel.

A phase I clinical trial involving 21 patients with advanced solid tumor malignancies 

refractory to standard care investigated the toxicity and pharmacokinetics of every 3 week 

dosing.268 Doses were escalated between 135 and 390 mg/m2. Genoxel-PM appeared to 

have linear kinetics over this range. The most frequent toxicities were myalgia, neutropenia, 

and neuropathy. No hypersensitivity reactions were noted. Grade III myalgia was noted in 1 

patient at 230 mg/m2 and another at 300 mg/m2. The MTD was established at 390 mg/m2 as 

two out of three patients developed grade IV neutropenia or grade III polyneuropathy. A 

second phase I trial investigated weekly dosing in 24 Asian patients with solid tumors 

refractory to standard chemotherapy.269 Drug was given once weekly for 3 weeks followed 

by a week of rest. Dose was escalated between 80 and 200 mg/m2. Grade IV hematologic 

toxicity was observed at doses of 200 mg/m2 and the MTD was established at 180 mg/m2. 

Clinical efficacy appeared promising as 14 of the patients had partial responses or stable 

disease.

Several phase II trials have been conducted and have demonstrated generally positive 

results. Lee et al. conducted a single-arm trial of every 3 week Genoxel-PM (300 mg/m2) in 

patients with metastatic breast cancer.270 The overall response rate was 60% and median 
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time to progression was 9 months. Grade III neuropathy was noted in 51% of patients. Two 

patients also had grade III acute hypersensitivity reactions. A second phase II study involved 

69 patients with advanced NSCLC who had not received prior chemotherapy for their lung 

cancer.271 Patients received Genoxel-PM (230 mg/m2) and cisplatin (60 mg/m2) on every 3 

week cycles. Genoxel-PM dose was escalated to 300 mg/m2 on subsequent cycles in patients 

not experiencing grade III or higher toxicity (47% of patients). Overall response rate was 

37.7% and median time to progression was 5.8 months with median OS of 21.7 months. 

Toxicities were generally mild. Peripheral neuropathy was the most frequent grade II 

toxicity (13.0%). It is worth noting that two patients experienced grade IV hypersensitivity 

reactions. A third single-arm phase III study investigated Genoxel-PM + gemcitabine as first 

line treatment for advanced NSCLC.272 Forty-three chemotherapy naive patients were 

treated with Genoxel-PM (230 mg/m2) and gemcitabine (1000 mg/m2) on days 1 and 8 of a 

3 week cycle. Median number of cycles received was 4, with an overall response rate of 

46.5%. Median progression free survival and overall survival were 4.0 and 14.8 months, 

respectively. Grade III/IV neutropenia was observed in seven patients (16%) with two fatal 

pneumonias reported.

Given these favorable results, and those with Abraxane, Genoxel-PM has been approved for 

the treatment of metastatic breast cancer and advanced NSCLC in South Korea. Preliminary 

data from a South Korean phase III trial appear to demonstrate superior efficacy over 

solvent-based paclitaxel in the treatment of metastatic breast cancer. Genoxel-PM has not 

been approved by the FDA, although additional trials are ongoing in the United States.

5.1.2. NK012—NK012 (Nippon Kayaku Co. Ltd.) is a polymeric NP formulation of 

SN-38, a biologically active metabolite of CPT-11 (irinotecan). The conversion of CTP-11 

to SN-38 is mediated by hepatic carboxylesterases, with a metabolic conversion rate of 

under 10% of the total volume of CPT-11.273 With such a low conversion rate, the 

generation of SN-38 was quite attractive. NK012 is formed by the aqueous self-assembly of 

amphiphilic block copolymers of PEG-poly glutamic acid covalently bound to SN38 by an 

ester bond. The hydrophobic SN-38 bound PGA (poly(L-glutamic acid)) forms the core of 

the micelle and is protected from uptake and degradation. Cleavage of SN-38 from PGA 

occurs slowly by the process of hydrolysis under physiologic conditions leading to stable, 

prolonged drug release over many hours. A number of preclinical studies have demonstrated 

activity against a number of tumor types including pancreatic cancer, glioma, NSCLC (non-

small-cell lung cancer), RCC (renal cell carcinoma), and gastric cancer.273–277 NK012 has 

been studied in two phase I trials. The first examined pharmacokinetics and toxicity in 24 

patients with advanced solid tissue malignancies refractory to standard therapy.278 Patients 

were treated every 3 weeks. Dose was escalated from 2 to 28 mg/m2. One of nine patients in 

the 20 mg/m2 arm experienced transient grade IV neutropenia. No grade IV toxicity was 

seen at 24 mg/m2 and 2/8 patients had grade IV neutropenia at 28 mg/m2, which was 

determined to be the MTD. SN-38 release was slow and controlled with a terminal phase 

half-life of approximately 210 h independent of dose. A second phase I study found similar 

results with an MTD of 37 mg/m2. Several other phase I trials have been completed with 

results pending. In the U.S., there is an ongoing single-arm phase II trial of NK012 (28 

mg/m2 every 28 days) as single agent therapy in relapsed, metastatic triple negative breast 
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cancer patients (NCT00951054). Another single-arm phase II study in patients with relapsed 

SCLC has completed accrual (NCT00951613). There is also an ongoing phase II colorectal 

trial in Japan.

5.1.3. NK105—NK105 (Nippon Kayaku Co. Ltd.) is a polymeric micellar formulation of 

paclitaxel consisting of PEG and modified polyaspartate as a hydrophobic block. Similar to 

Abraxane, NK105 is a NP formulation of paclitaxel which is devoid of solvents including 

Cremophor EL. NK105 was developed to improve the therapeutic index of paclitaxel 

therapy. This preparation has shown promising potential in several preclinical studies.279,280 

As compared to solvent-based paclitaxel, NK105 showed greater radiosensitization in lung 

tumors and greater cytotoxicity for several cancer cell lines in vitro. Further, plasma 

paclitaxel AUC was 90-fold higher with NK105 than solvent-based preparations with a 25-

fold higher tumor AUC. Neurotoxicity was also decreased in mice treated with NK105 as 

compared to Taxol. A dose-finding phase I study was undertaken by Hamaguchi et al.278 

Nineteen patients were treated every 3 weeks with doses escalated from 10 to 180 mg/m2. 

Neutropenia was the most common toxicity and occurred in three patients at the 180 mg/m2 

dose (1 grade III, 2 grade IV). There were no events of peripheral neuropathy. There was 

one episode of grade 2 acute hypersensitivity reaction. Maximum plasma AUC and Cmax 

increased in a dose-dependent manner. A phase II study demonstrated clinical efficacy in 

patients with advanced gastric cancer that had failed at least one line of chemotherapy. 57 

patients were treated with q3 weeks NK105 (150 mg/m2). The ORR was 25% with median 

PFS of 3 months and median OS of 14.4 months. In the U.S., there is currently an ongoing 

randomized phase III trial of NK105 versus Taxol for the treatment of advanced or 

metastatic breast cancer (NCT01644890).

5.1.4. SP1049C—Another polymeric NP currently under clinical investigation is a 

polymeric formulation of doxorubicin called SP1049C (Supratech Pharma Inc.). This NP 

consists of a mixture of proprietary block copolymers (Pleuronic L61 and F127). 

Doxorubicin is quite hydrophobic and readily encapsulated in the hydrophobic core of the 

micelles. Several preclinical studies have demonstrated improved antitumor efficacy as 

compared to doxorubicin in mouse models of myeloma and leukemia.281–283 The drug was 

found to be well tolerated in a dose-finding phase I study.284 In this study, 26 patients with 

tumors refractory to other therapy were treated with escalating doses of SP1049C (5–90 

mg/m2). The primary toxicities were hematologic. Grade III–IV neutropenia was seen in one 

of seven patients at 35 mg/m2 and increased to four of seven patients at 90 mg/m2. The 

recommended MTD for future phase II studies was 70 mg/m2. It is worth noting that four 

patients also had >20% fall in their EF while on trial. Pharmacokinetics followed an 

appropriate linear dose–response increase. This was followed by a phase II study in patients 

with advanced chemotherapy naive esophageal and GE junction tumors.285 Twenty-one 

patients were treated with every 3 week SP1049C (75 mg/m2). The overall response rate was 

47% with median PFS and OS of 6.6 and 10 months, respectively. Toxicity was primarily 

hematologic. Measurable declines of at least 15% in left ventricular ejection fraction 

(LVEF) were noted in four patients, but none of these were symptomatic or resulted in a 

LVEF of <45% of baseline. SP1049C has been granted orphan drug status for gastric cancer 

by the FDA, and phase III trials are under development.
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5.1.5. BIND-014—Most available NP carriers are nonspecific in that they do not directly 

target any specific tissues. They are semiselective in that they take advantage of abnormal 

tumor physiology, including tumor vasculature, to preferentially accumulate in tumors with 

limited access to normal tissues. In an effort to improve specificity, a number of groups have 

attempted to generate targeted NPs, and possess some inherent cell type specificity. This can 

be accomplished by the conjugations of epitopes/biologically targeted ligands to the NP 

surface. One such nanoparticle that has entered clinical development is BIND-014 (Bind 

Therapeutics). It is a polymeric NP formulation of docetaxel, which is conjugated to a ligand 

targeting the extracellular domain of prostate-specific membrane antigen (PSMA), a protein 

specific to prostate cancer cells. An initial study by Hrkach et al. investigated the 

development of PSMA targeted docetaxel NPs.286 They used a combinatorial approach to 

optimize the biodistribution and pharmacokinetics of PSMA targeted docetaxel NPs for 

chemotherapeutic benefit in metastatic prostate cancer. Biodistribution and drug release 

studies demonstrated controlled drug release with lower concentrations in liver and bone 

marrow than in plasma. Toxicity studies demonstrated no increased risk of hypersensitivity 

reactions or toxicity to high dose targeted versus nontargeted NPs in rats. Mice bearing 

LNCaP prostate cancer xenografts demonstrated greater delays in tumor growth following 

the administration of targeted docetaxel NPs than with either untargeted docetaxel NPs or 

solvent-based docetaxel. When tested against nonprostate tumor xenografts, they observed a 

similar efficacy between targeted and nontargeted NPs, both of which appeared more 

efficacious than solvent-based docetaxel. An additional study has also demonstrated 

improved antitumor efficacy of targeted versus nontargeted docetaxel NPs in several 

prostate cancer cell lines.287

The clinical translation of BIND-014 is ongoing. Interim data from a phase I study 

(NCT01300533) in patients with advanced solid tumors have demonstrated some antitumor 

activity at doses of 75 mg/m2.288,289 Several phase II studies are also ongoing in patients 

with metastatic prostate cancer (NCT01812746) or NSCLC (NCT01792479, 

NCT02283320).

5.1.6. Nanoplatin (NC-6004)—As mentioned above, cisplatin (cis-

diamminedichloroplatinum, CDDP) is a frequently utilized chemotherapeutic agent. NP 

formulation provides a rational approach to improve the therapeutic index of platinum 

therapy. Nanoplatin (NC-6004, NanoCarrier Co. LTD) is a polymeric micellar formulation 

of cisplatin. Several preclinical studies demonstrated the potential advantages of Nanoplatin 

over free cisplatin. One early study demonstrated a more favorable pharmacologic and 

toxicity profile in rats.290 The plasma AUC for Nanoplatin was 65-fold higher with a 

clearance value 1/19th that of free cisplatin. Tumor efficacy was equivalent. However, 

nephrotoxicity and neurotoxicity (sciatic nerve injury) were significantly reduced by NP 

formulation. Notably, there was transiently increased hepatotoxicity noted in the rats treated 

with Nanoplatin, which was not observed in cisplatin treated rats. A second study 

demonstrated reduced ototoxicity in guinea pigs.291 Unlike cisplatin, Nanoplatin did not 

induce changes in auditory brainstem responses, sensory hair cell loss, or platinum 

distribution in the organ of Corti. Another study demonstrated improved in vivo tumor 
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growth delay with less nephrotoxicity in mice with OSC-19 bearing human oral SCC 

xenografts.292

Published results are available for a phase I study of Nanoplatin.293 This study included 17 

patients with advanced solid tumor malignancies treated with escalating doses (10–120 

mg/m2) of NC-6004 given as every 3 week treatments. The drug was relatively well 

tolerated. However, after noting evidence of nephrotoxicity and hypersensitivity reactions 

early in the phase I trial, all remaining patients were treated with aggressive hydration and 

premedication (dexamethasone, chlorphenamine, and ranitidine). Despite this, two transient 

grade II renal toxicities were observed at 90 mg/m2, and several grade II/III renal and 

hypersensitivity reactions were noted at 120 mg/m2. The recommended dose for additional 

phase II studies was 90 mg/m2. Pharmacokinetics were linear and dose responsive, and 

Nanoplatin showed delayed and sustained release of cisplatin. There are currently several 

ongoing clinical trials of Nanoplatin. There is an ongoing phase I/II study of Nanoplatin and 

gemcitabine for advanced solid tumor and NSCLC (NCT02240238) and two phase III trials 

of gemcitabine versus gemcitabine + Nanoplatin with advanced or metastatic pancreatic 

cancers (NCT00910741, NCT02043288).

5.1.7. NC-4016—Oxaliplatin, like its other platinum siblings cisplatin and carboplatin, is a 

DNA cross-linking agent with potent antitumor activity to a broad range of tumors.294 

NC-4016 (NanoCarrier Co. LTD) is a polymeric NP formulation of oxaliplatin that has 

demonstrated promising preclinical data and is under further clinical development.295 The 

investigators demonstrated that NP formulation improved in vivo tumor growth delay in 

xenograft models when compared to small molecule oxaliplatin. Further, free oxaliplatin 

induced significant peripheral neuropathy as measured by cold hyperalgesia and allodynia, 

whereas NP-formulated oxaliplatin did not. This study demonstrated an improved 

therapeutic index of oxaliplatin by NP formulation. Similar results were obtained in a 

second preclinical study.296 A phase I dose-finding study in patients with advanced cancers 

or lymphoma is currently underway (NCT01999491).

5.1.8. NK911—NK911 (Nippon Kayaku Co. Ltd.) is a polymeric formulation of 

doxorubicin. It has shown promising preclinical results of improved tumor accumulation of 

doxorubicin as compared to free drug with improvements in antitumor activity in vivo.297 

When compared to liposomal doxorubicin (DOXIL), NK911 appears to be less stable with 

more drug release with accumulation of doxorubicin in both spheroid outer layers and 

centers.298 One interpretation of these data is that DOXIL may be more efficient at 

delivering drugs to tumors near the vasculature, whereas NK911 may better expose cells 

further removed from the blood vessels by improved diffusion. A phase I dose-finding study 

in 23 patients with advanced solid tumors has been completed.299 Neutropenia was the 

predominant toxicity, and several instances of grade IV neutropenia were observed in 

patients treated with 67 mg/m2. The recommended dosing for phase II studies was 50 

mg/m2. Other side effects included nausea and vomiting. Pharmacokinetics demonstrated 

dose-dependent increases, as expected. Ongoing phase II studies in solid tumors have been 

proposed, but to our knowledge there are no trials actively accruing patients at this time.
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5.1.9. Paclical—Paclical (OAS-PAC-100, Oasmia Pharmaceutical AB) is a micellar 

formulation of paclitaxel encapsulated in the proprietary retinoid compound XR-17 and 

devoid of Cremophor EL. Preclinical studies demonstrated promising results, and the FDA 

granted orphan status in 2009 based on the hypothesis that Paclical was safer than Taxol. 

Paclical has completed a phase III trial in patients with recurrent ovarian, primary peritoneal, 

or fallopian tube carcinomas (NCT00989131). The parent company, Oasmia, has filed for 

application in Russia pending results of the completed phase III trial. No publications or 

public information are available on this therapeutic.

5.2. Dendrimers

Dendrimers are likely to become a very important class of NP delivery vehicles as they 

represent a chemically interesting and burgeoning field. The term dendrimer refers to 

branched or dendrimeric polymers. Dendrimers are comprised of conventional monomers 

generated by the iterative addition of concentric branched layers (frequently referred to as 

generations) around a central core. The addition of successive generations results in highly 

amplified, organized, and mathematically defined surface sites. The resulting overall 

structure has four principal regions: a core scaffold, interior layers, terminal surface groups 

attached to interior layers, and void spaces. The highly controlled generational growth 

process allows for the generation of NPs with precise control over size, shape, elemental 

composition, and surface properties. Several recent reviews very nicely detail the process of 

dendrimer generation and chemistry.300,301

Given the precise control over specific NP properties afforded by dendrimer generation, it is 

unsurprising that these highly adaptable platforms represent an active area of research as 

drug delivery vehicles. Dendrimers can be formulated for delivery via parenteral, 

transdermal,302 intraocular,303 and oral304 administration routes. Dendrimeric platforms 

have been developed to target inflammation, infectious disease, cancer, wound healing, and 

ocular diseases as well as for use in theranostic applications. A detailed review of preclinical 

studies is beyond the scope of this Review but was outlined very nicely in a recent 

review.300 To date, one dendrimeric NP formulation, Vivagel, has completed phase III 

investigation, and we will review that here in more detail.

5.2.1. Vivagel—Preclinical work from the 1990s–2000s demonstrated the proof of 

principle that polyanionic compounds, including sulfated polymers, can have potent antiviral 

activity against enveloped viruses including HIV and HSV.305,306 The generation of 

synthetic polyanionic compounds by traditional chemical processes is fairly difficult. 

However, the controlled generation of many such compounds as dendrimers was undertaken 

by Starpharma (Melbourne, Australia) in the early 2000s. They generated a library of 

polyanionic dendrimers with the goal of identifying effective antiviral compounds for the 

clinical development of drugs to prevent the transmission of sexually transmitted infections 

(STI). A number of these dendrimeric compounds showed potent antiviral activity. The lead 

compound identified was SPL7013, an anionic G4-poly(L-lysine)-type dendrimer displaying 

32 napthalene disulfonate groups on the surface.307 This was formulated as a topical vaginal 

gel. Early preclinical studies in pig-tailed macaques demonstrated that 5% (w/w) SPL7013 

protected 100% of the monkeys from infection via intravaginal infection of simian-human 
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immunodeficiency virus (SHIV).308 Further preclinical studies demonstrated activity against 

HSV1 and HSV2 in vitro.309 In June 2003, an FDA investigational new drug application 

was submitted for SPL7013, marketed as Vivagel. This was the first IND application 

submitted for a dendrimeric compound.

The first phase I study of Vivagel demonstrated that intravaginal administration was well 

tolerated.310 Thirty-eight women were treated with 0.5%, 1%, or 3% Vivagel or placebo 

daily for 7 days. Mild symptoms including mild abdominal pain, vaginal burning, and 

vaginal itching were observed between 11% and 25% of patients in each group (including 

25% in the control group). A second phase I study attempted increasing to twice daily 

administration of 3% gel.311 Again, this was fairly well tolerated but mild symptoms were 

more frequently reported in the Vivagel than control groups (71% vs 53%) as were more 

frequent mild colposcopic irregularities (83% vs 53%) including cervical erythema. The 

latter observation is quite concerning as any degree of mucosal breakdown or lymphocyte 

recruitment could be potentially problematic as loss of mucosal integrity could favor viral 

transmission. Indeed, a follow up phase I study demonstrated small but reversible increases 

in markers of vaginal inflammation including vaginal mucosal cytokine and lymphocyte 

levels during a 14 day course of twice daily 3% Vivagel.312 While inflammation following 

twice daily administration is potentially concerning, another study demonstrated potent 

antiviral activity in cervicovaginal fluids collected from women treated with 5 doses of 3% 

Vivagel with at least 5 days between doses.313 At up to 3 h post-treatment, >95% of samples 

showed near complete antiviral activity. At 24 h, >90% inhibition was observed in 6 of 11 

patients. There were no patient-reported vaginal, cervical, or vulvar irritative complaints, 

although no colposcopic evaluation was made. While these early studies demonstrate that 

Vivagel can retain antiviral activity in cervicovaginal fluids and is relatively well tolerated, 

there are no data demonstrating reduced HIV transmission to date. Currently, Vivagel has 

been formulated as a condom lubricant intended to reduce viral STI infections and is 

available in Australian markets. Further studies are ongoing to try to expand use in other 

markets.

Clinical studies performed by Starpharma also demonstrated efficacy against the 

polymicrobial infection bacterial vaginosis. Results of a phase II study in 2011 demonstrated 

high rates of clinical cure and confirmed test of cure. However, the results of two phase III 

trials in 2012 were inconclusive (NCT01577537 and NCT01577238). The primary end point 

of both trials was test of cure with secondary end points of clinical cure (resolution of 

symptoms). Patients were treated with 1% Vivagel or placebo daily for 7 days. Clinical cure 

was achieved in 50% and 57% of women treated with Vivagel as compared to just 17% and 

21% of placebo treated patients. However, test of cure showed no difference between 

Vivagel and placebo treated patients in either study (27% vs 21% and 28% vs 28%). Given 

the lack of statistical benefit in test of cure, a NDA was not filed with the FDA for a 

bacterial vaginosis indication. However, the increased rates of symptomatic improvement 

were encouraging, and ongoing studies are underway to attempt to demonstrate significant 

improvements in decreased risk of bacterial vaginosis recurrence with Vivagel treatment.
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6. Inorganic Nanoparticles

6.1. Magnetic Iron Oxide Nanoparticles

Iron oxide nanoparticles exemplify the unique properties that can result from formulating 

materials on nanoscale. Iron oxide nanoparticles possess a superparamagnetic property, 

which is not present in other iron oxide materials.314 In the presence of an external magnetic 

field, superparamagnetic iron oxide nanoparticles (SPIONs) can provide strong 

paramagnetic signals at very low doses (Figure 5), which make them excellent contrast 

agents in magnetic resonance imaging (MRI). In addition, these agents can also produce heat 

and have been evaluated as clinical hyperthermia agents.315

6.1.1. Ferumoxtran-10—Ferumoxtran-10 (AMI-227, AMI 227CN, AMI 27, G 53425, 

BMS 180549, Combidex, Sinerem) is an ultrasmall SPION (USPIO) that has been 

extensively studied as a MRI contrast agent. The agent is comprised of an iron oxide core, 

which is 10–20 nm in diameter, coated by dextran T-10.316 Ferumoxtran-10s preclinical 

development started in the late 1980s and early 1990s. In one study in rats and rabbits, the 

investigators demonstrated that Ferumoxtran-10 can differentiate tumor deposits from bone 

marrow.317 Subsequent preclinical studies showed that Ferumoxtran-10 is an excellent agent 

for MR lymphography, which established its clinical translation path forward as a 

lymphotrophic MR contrast agent.318 For this clinical application, Ferumoxtran-10 is a 

negative contrast agent as it enhances the normal tissue (lymph nodes) and identifies the 

disease process (no enhancement) by negative contrast.

In an open-label, placebo-controlled phase I investigation of Ferumoxtran-10, 41 healthy 

volunteers were given Ferumoxtran-10.319 The investigators reported no postdose change in 

physical exams, vital signs, or electrocardiogram. In addition, they did not see any 

significant changes in clinical laboratory results. However, they did note 14 adverse events 

that were considered “not serious”.

One of the first clinical experiences of Ferumoxtran-10 studied its safety and effectiveness 

as a MR contrast agent in patients with urologic and pelvic cancer who had suspected lymph 

node metastases.320 30 patients underwent standard MR imaging followed by repeat 

imaging with Ferumoxtran-10. 60 histologically confirmed lymph nodes were correlated/

analyzed on MRI images. The investigations found that Ferumoxtran-10 was well tolerated 

and it detected 10 additional pathologic nodes than standard MR imaging. The sensitivity of 

Ferumoxtran-10 imaging was 100% but specificity was 80% in this study. Over the 

following decade, Ferumoxtran-10 has been studied for MR imaging of multiple body sites, 

including liver,321,322 pelvis,322 cardiac imaging,323 mediastinum,324 and head and neck.325 

The general findings are that Ferumoxtran-10 can improve the sensitivity of lymph node MR 

imaging.

The most high profile clinical study of SPIONs was a trial evaluating Ferumoxtran-10 in 

detection of lymph-node metastases in prostate cancer.326 80 patients with high risk 

(clinically localized) prostate cancer underwent Ferumoxtran-10 MR imaging before and 

after surgical resection of the prostate with lymph node biopsy or dissection. 334 lymph 

nodes were identified on surgery. 63 nodes (18.9%) from 33 patients had pathologically 
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confirmed metastases. Of these 63 nodes, 45 (71.4%) did not fulfill the usual imaging 

criteria for malignancy. MRI with lymphotropic superparamagnetic nanoparticles correctly 

identified all patients with nodal metastases, and a node-by-node analysis had a significantly 

higher sensitivity than conventional MRI (90.5% vs 35.4%, p < 0.001). More importantly, 

Ferumoxtran-10 significantly improved the positive and negative predictive values of 

identifying a malignant lymph node, which are the most clinically relevant test 

characteristics.

Because of the large number of clinical trials with Ferumoxtran-10, its safety profile is also 

well established. In a comprehensive analysis of 37 clinical trials that included 1777 

patients, 23.2% of patients reported some kind of adverse event.327 The most commonly 

reported treatment-related adverse events were back pain, pruritus, headache, and urticaria. 

Only seven serious adverse events (SAEs) (0.42%) were considered to be treatment-related 

(anaphylactic shock, chest pain, dyspnea, skin rash, oxygen saturation decreased, and two 

cases of hypotension). There were 12 deaths, only one of which (anaphylactic shock) was 

considered to be related to ferumoxtran-10, which was administered by bolus injection of 

undiluted product, a mode of administration that is no longer recommended.

Despite the strong clinical data, Ferumoxtran-10 was not approved by the FDA. Instead of 

requesting approval for a narrower indication, Ferumoxtran-10 application requested broad 

approval for imaging lymph nodes throughout the body. While the clinical data mostly 

support this request, the broad indication caused concerns from the regulatory body. Another 

issue was the single patient who died from anaphylactic shock. This raised safety concerns 

even though the data indicate the drug is quite safe (see above). Last, the low level of 

financial incentive for contrast agents prevented the agent from further development after 

the initial rejection. To this day, there is no approved SPION for MR imaging.

6.1.2. Dextran-Coated Iron Oxide NPs (Sienna+)—Similar to Ferumoxtran-10, 

Sienna+ is also a dextran coated SPION that is lymphotropic. Instead of systemic 

administration, Sienna+ is given locally for detection of sentinel lymph nodes (SLN). It is 

combined with a hand-held device that can detect Sienna+. It competes with radioisotope 

and dye-based SLN detection technologies and is marked as a device. In a clinical study on 

detection of SLN in breast cancer, Sienna+ was compared to the “gold standard” 

radioisotope (99mTc).328 The study was a multicenter prospective trial with a noninferiority 

design. It accrued 150 patients and detected 291 SLNs, with a detection rate per patient of 

97.3% (146/150) for 99mTc versus 98.0% (147/150) for Sienna+. The investigators 

concluded that Sienna+ can be performed easily and is noninferior to 99mTc for SLN 

detection. The agent has been approved by the European Commission (CE) in 2011, and 

U.S. studies are ongoing.

6.1.3. Aminosilane-Coated Iron Oxide NPs (MFL AS1)—As mentioned earlier, 

SPIONs can also be used for hyperthermia therapy, a potential treatment modality for 

cancer.329 One SPION formulation, an aminosilane coated SPION (MFL AS1), has been 

studied clinically for this application. Preclinical data showed that MFL AS1 can produce 

sufficient elevations in temperature under a magnetic field, and the hyperthermia effect can 

reduce tumor growth.330,331
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MFL AS1 has been studied clinically in locally recurrent prostate cancer and recurrent 

glioblastoma multiforme (GBM). In a prospective phase I study, MFL AS1 was injected into 

the prostates of 10 patients with biopsy proven locally recurrent prostate cancer.332 

Maximum temperature of 55 °C was achieved. However, the agent also caused high skin 

temperatures (up to 44 °C), which led to patient discomfort. No systemic toxicity was 

observed, although four patients had urinary retention. Median duration of PSA-control was 

only 4.5 months.

In a single-arm phase II study, 66 patients with recurrent GBM received intratumoral 

instillation of MFL AS1. Hyperthermia sessions were sequenced immediately before or after 

fractionated radiotherapy.333 The primary study end point was overall survival following 

diagnosis of first tumor recurrence (OS-2), while the secondary end point was overall 

survival after primary tumor diagnosis (OS-1). Median OS-1 was 23.2 months and only 

tumor volume at study entry was significantly correlated with ensuing survival (P < 0.01). 

The only significant toxicity appeared to be grade 1–3 thermal stress in six patients. MFL 

AS1 remains under clinical investigation for GBM.

6.1.4. Siloxane-Coated Iron Oxide NPs (Ferumoxsil)—Siloxane-coated SPIONs 

have demonstrated clinical utility as oral MRI contrast agents. AMI-121 is a NP formulation 

of iron oxide crystals (each 10 nm), which aggregate to form 300 nm particles. These 

particles are coated in the inert siloxane, which helps to prevent iron absorption by 

interfering with the uptake of iron from the GI tract. The microcrystalline structure retains 

its supraparamagnetic properties, including loss of signal in the presence of an external 

magnetic field and shortening of the T2 relaxation time.

The preclinical studies of Ferumoxsil (AMI-121) appeared positive, as they did not show 

any evidence of mutagenicity in rats using the Ames test. The drug appeared safe, as the 

MTD in rats and dogs was approximately 1000 times the dose that was ultimately used in 

the clinical trial. The first clinical study conducted with Ferumoxsil (AMI-121) included 15 

healthy adult men.334 This study also incorporated preclinical data of the potential for 

mutagenicity, MTD, and fecal clearance. Approximately 91% of the material was recovered 

in stool, with 87% being recovered within 72 h. In the clinical portion, healthy volunteers 

were given doses of AMI-121 ranging from 22.5 to 225 mg and imaged with abdominal 

MRI of 0.6 or 1.5 T. AMI-121 proved a successful oral contrast agent in this study. Delivery 

throughout the stomach and small bowel (proximal through distal) was achieved in every 

subject. The enhanced images showed improved delineation of nonbowel organs (comparing 

pre vs post contrast enhancement) including the pancreas (both head and tail), paraaortic 

lymph nodes, and anterior kidneys. Importantly, this formulation did not appear to produce 

any noticeable artifacts. AMI-121 was relatively well-tolerated, producing transient diarrhea 

in 5 out of 15 patients, but no serious adverse events. Subsequent results from a small 

multicenter phase III study were positive as well.335 The phase III study included 20 patients 

with gynecological indications for pelvic MRI, including cervical cancer staging, suspected 

recurrent ovarian cancer, or other gynecological malignancies. Patients were given 600–900 

mL of Ferumoxsil over a 60 min interval. Of note, 13 patients were treated with 

hyoscinbutyl bromide to decrease artifact by decreasing peristalsis. As compared to 

precontrast, Ferumoxsil contrast significantly improved contrast scores in the small bowel 
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and cecum. However, improvement in the colon was more limited and only significant on 

T2 weighted imaging. There was improved delineation of pelvic organs, including the uterus 

and adnexa. Improved delineation of the bladder was limited to the T2 weighted images. 

Lesion delineation, including identification of local lymphadenopathy, was significantly 

improved, and MRI diagnosis matched surgical diagnosis in 17 patients. There were no 

serious adverse events. Interestingly, there was no vomiting or diarrhea within 24 h of 

consumption. The main patient complaint was the contrast flavor, which limited 19 out of 20 

women from consuming all 900 mL (although all completed the minimum of 600 mL).

A subsequent study compared the sensitivity and specificity of Ferumoxsil with oral contrast 

enhanced CT scan for the detection of suspected gastrointestinal tract lesions.336 Thirty 

patients with known or suspected GI disease enrolled in this study. All patients received 

MRI with Ferumoxsil oral contrast and CT with oral contrast media (Gastroview solution 

(Mallinckrodt Medical, Inc., St. Louis, MO) or E-Z-Cat (E-Z-EM, Inc., Westbury, NY)). As 

compared to oral contrast CT, Ferumoxsil-enhanced MRI was less sensitive (67% vs 83%) 

but more specific (89% vs 68%). A total of eight confirmed abnormalities were detected by 

both modalities. Eleven abnormalities were detected only on CT and four were detected only 

on MRI. All four lesions detected on contrasted MRI only were in the duodenum and small 

bowel. Surgical diagnosis demonstrated six false positives on CT as compared to only 2 on 

Ferumoxsil-contrasted MRI. Therefore, FDA approval was granted for oral Ferumoxsil to 

image the upper GI tract in 1996.

Looking to improve the efficacy in the lower GI tract (sigmoid colon, rectum) and pelvis, 

another group used Ferumoxsil as a rectal contrast to image pelvic organs with promising 

results.337 This phase III study included 20 patients (16 women, 4 men) with suspected 

rectosigmoid or ovarian masses. After a precontrast scan, 300–600 mL of contrast was given 

rectally (average of 481 mL). Delineation was significantly improved for all images of the 

rectum, rectosigmoid, and sigmoid colon. Delineation of all pelvic organs, including 

lymphatics and vessels, excluding the prostate (N = 4 for male patients), was significantly 

improved with Ferumoxsil contrast. There were no adverse events reported. Correctness of 

diagnosis was enhanced with Ferumoxsil contrast. Six of 13 patients with ovarian cancer 

had bowel involvement at time of surgery; noncontrast MRI correctly predicted three of the 

six (50%), whereas contrasted MRI correctly predicted five of the six (83%). Peritoneal 

implants were detected in six out of seven (86%) and seven out of seven (100%) patients 

with contrast-unenhanced and enhanced MRIs, respectively. Four patients had colorectal 

tumors, of which noncontrast MRI only detected two (50%) as compared to all four (100%) 

with contrast MRI. Readers reported improved diagnostic confidence with postcontrast 

enhancement in 14 of the 20 patients. To our knowledge, no additional studies have 

investigated Ferumoxsil as a rectal contrast, and there is no FDA indication for this purpose.

6.1.5. Carbohydrate-Coated Iron Oxide NPs (Ferumoxytol)—Chronic anemia is a 

symptomatic problem for many adults, particularly those with chronic kidney disease 

(CKD). The etiologies of anemia in CKD are multifactorial and very well established. These 

etiologies include loss of endogenous erythropoietin production, blood loss from 

hemodialysis, and vitamin deficiencies. Chronic anemia tends to worsen as renal function 

declines. The management of chronic anemia generally involves iron administration, which 
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is most frequently accomplished with oral iron tablets. However, oral iron replacement is 

often suboptimal due to its poor absorption and bioavailability.338 Oral iron causes 

abdominal discomfort and cramping and is poorly tolerated in some patients. The 

combination of toxicity and multiple daily dosing often translates to poor patient 

compliance. For many patients, parenteral (intravenous) iron replacement has been utilized 

to circumvent these issues, particularly in patients with CKD. Unfortunately, parenteral iron 

replacement is not without its own limitations. Iron dextran, the first available IV iron 

formulation, was associated with mild side effects including arthralgias, chills, and myalgia. 

However, there were also rare incidents of immediate anaphylaxis, which were sometimes 

fatal.339–341 Lower molecular weight formulations decreased the incidence of anaphylaxis 

but not entirely.342 Newer generations of IV iron formulations include iron sucrose and iron 

gluconate, which have fewer toxicities but require multiple infusions over relatively long 

periods of time.

The search for alternative IV iron delivery eventually focused on supramagnetic iron 

nanoparticles. One of these was ferumoxytol (marketed as Feraheme in the U.S., Rienso in 

the EU). Ferumoxytol is a supramagnetic iron oxide coated in a carbohydrate shell of 

polyglucose sorbitol carboxymethyl ether. The resultant colloidal particle ranges in size 

from about 20 to 30 nm. Ferumoxytol is formulated with mannitol and administered via 

intravenous injection.343 It was initially developed as an IV MRI contrast agent. It was well-

tolerated and showed promise as an MRI contrast agent in large blood vessels.344,345 

However, it was also recognized that ferumoxytol could also be a useful delivery vector for 

parenteral iron replacement. The main pharmacologic advantages of ferumoxytol are related 

to the carbohydrate shell. This helps to physically isolate the iron from other components in 

the blood. The particles are recognized and taken up via the macrophages in the RES, where 

the iron is released from the shell within vesicles. From there, free iron can either be 

transferred to transferrin and utilized by erythroid precursor cells, or the iron can be 

incorporated into intracellular stores.

The safety and efficacy of ferumoxytol for the treatment of anemia associated with 

nonhemodialysis-dependent CKD was established initially in a phase II trial.346 This trial 

included 21 patients with stage I–V CKD who were either dialysis free (18) or on peritoneal 

dialysis (3) and were either not receiving EPO-stimulating agents or on stable dosing. 

Patients had to have hemoglobin (Hb) less than 12.5 and transferrin saturation less than 

35%. Patients were dosed with either 4 doses of ferumoxytol 225 mg every 2–3 days or 2 

doses of 550 mg separated by 1 week. For safety evaluation, vital signs were monitored at 

baseline, 15, 30, and 60 min after the injection, and then weekly. Both groups showed 

significant increases in Hb, reticulocyte counts, ferritin, and transferrin saturation. Peak Hb 

was observed at 4 weeks for the group treated with 4 doses of 225 mg (median Hb increased 

from 10.9 to 11.9) and at 5 weeks for the group treated with 2 doses of 550 mg (median Hb 

increased from 10.0 to 11.0). At 2 weeks, ferritin increased from 252 to 988 and 212 to 885, 

respectively, for the two groups. Seven patients reported mild symptoms including nausea, 

pain at injection site, chills, and constipation, but there were no reports of anaphylactic 

responses. This small study suggested that ferumoxytol could be well-tolerated as a rapid 

injection and was effective in treating anemia in non-hemodialysis patients with CKD. A 

subsequent crossover phase III trial compared the safety of IV ferumoxytol (510 mg as a 
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single injection) versus placebo in 750 patients with stages I–V CKD with Hb between 9 and 

12.5.347 Patients were treated with either ferumoxytol or placebo, followed by the other 

treatment 1 week later. This study did include dialysis patients who had been on dialysis for 

at least 90 days prior to randomization. Ferumoxytol was well tolerated. Any adverse event 

was observed in 21% of patients following ferumoxytol and 16% of patients following 

saline placebo. The majority were minor, nonspecific toxicities including itching, site 

reaction, and chills. Serious adverse events were seen in 2.9% of patients after ferumoxytol 

and 1.8% of patients after placebo. Only one patient had a serious acute anaphylactic 

reaction to ferumoxytol.

The superiority of ferumoxytol to daily oral iron in nonhemodialysis-dependent patients 

with CKD was demonstrated in a phase III trial of 304 patients by Spinowitz et al.348 

Eligible patients had stage I–V CKD and iron deficiency anemia with Hb less than 11, 

ferritin less than 600 mg/dL, and transferrin saturation less than 30%. Patients were 

randomized 3:1 to receive IV ferumoxytol (510 mg × 2 doses separated by 5 ± 3 days) or 

oral iron 200 mg daily for 21 days. The primary end point was the increase in Hb on day 35. 

IV ferumoxytol was more efficacious as the average increase in Hb at day 35 was 0.82 vs 

0.16 g/dL with oral iron supplementation. This difference was even more pronounced in 

patients getting erythropoietin-stimulating agents (1.16 vs 0.19 g/dL). Adverse events were 

more common in the oral iron group (24% vs 10.6%) with the majority being GI-related 

(nausea, constipation, etc.). Dizziness was the only adverse event more frequently seen in 

the ferumoxytol group but was only observed in 1.8% of patients. There were no serious 

acute events or anaphylactic reactions. Comparable results were obtained in a similarly 

designed European phase III study.

An additional phase III study demonstrated the superiority of IV ferumoxytol to daily oral 

iron in 232 hemodialysis-dependent CKD patients with iron deficiency anemia.349 This 

study was very similar to that of Spinowitz et al., except that it only included dialysis (stage 

5 CKD) patients and patients were randomized 1:1 as opposed to 3:1. The mean Hb increase 

at 35 days in the ferumoxytol arm was 1.02 g/dL as compared to 0.46 g/dL in the oral iron 

arm. This difference persisted after adjustment for other factors, including baseline 

hemoglobin content. As expected, there were more acute mild toxicities in the oral iron 

group (56% vs 49%) with most of those in the oral group being GI related. Serious adverse 

events were reported in 12% of patients in each group. There were two episodes of transient 

hypotension in the ferumoxytol group and none in the oral iron group.

On the basis of positive results in the above trials, the FDA granted approval for 

ferumoxytol (Feraheme) in the treatment of CKD patients with chronic iron deficiency 

anemia in 2009. The EMA also granted approval in 2012. Since then, there have been 

several phase III studies looking to expand the use to patients with iron deficiency anemia of 

any cause, not only those with CKD. The first compared ferumoxytol in two doses of 510 

mg to placebo and showed a favorable toxicity profile.350 The second compared two 

different IV iron formulations, ferumoxytol and iron sucrose, in patients who had failed or 

could not tolerate oral iron therapy.351 This noninferiority study included 605 patients 

randomized 2:1 to receive 2 doses of 510 mg ferumoxytol or 5 doses of 200 mg iron sucrose 

(over 14 days). The primary end point was change in Hb at week 5. Ferumoxytol showed a 
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superior mean increase in Hb (2.7 vs 2.4 g/dL), and a comparable number of patients 

achieved an increase of at least 2 g/dL in Hb (84% vs 81%). Patient-reported adverse events 

were similar (41% and 44%), as were treatment-related side effects (14% and 16%). There 

were slightly more serious adverse events in the ferumoxytol group (4.2 vs 2.5%), but there 

were no differences in the rates of expected serious adverse events, including acute 

cardiovascular complications. Patient-reported quality of life metrics were similar between 

the groups. A supplemental new drug application has been filed to try to gain FDA approval 

of ferumoxytol for the treatment of iron deficiency anemia from any cause.

6.1.6. Polystyrene-Coated Iron Oxide NPs (Ferristene)—Another oral magnetic 

particle formulation utilized clinically was Ferristene. This formulation consisted of ferrite-

type iron oxide particles coated with a nondegradable polystyrene resin carrier. The resultant 

nanoparticles had a mean diameter of approximately 300 nm. Preclinical studies 

demonstrated that the central moiety retained its supraparamagnetic properties, which were 

predominantly negative enhancement on T2. The first phase I study demonstrated that 

Ferristene could be used safely as an oral contrast agent for abdominal imaging but also 

demonstrated the need for careful dosing.352 Patients were given 1 L of contrast ranging 

from 0.05 to 2.5 g/L in concentration. Contrast agent progressed from the stomach to the 

colon at expected time intervals. The lowest concentration (0.05 g/L) was not sufficient as 

there was no signal reduction as compared to precontrast, and the highest concentration (2.5 

g/L) provided too much iron, which resulted in blurring and metallic artifact. Intermediate 

doses were somewhat improved but not without problems. The 0.1 g/L concentration only 

produced minor artifact in one out of nine patients, but it was only sufficient as a contrast 

agent in two out of nine cases. In contrast, the 1.0 g/L concentration produced artifact in four 

out of seven cases but was sufficient as a contrast agent in six out of seven cases. These 

results demonstrated that while Ferristene had potential as a contrast agent, the signal-to-

noise ratio (enhancement vs artifact) is somewhat steep. There was no significant toxicity, 

including GI upset or diarrhea, observed in any patients. Furthermore, blood and urine tests 

demonstrated no change in iron levels, suggesting that no or minimal absorption occurred.

A large, multicenter phase II study then addressed some of the imaging concerns raised in 

the phase I study discussed above. This trial included 216 patients at seven centers.353 

Patients ingested media with a concentration of 0.5 g/L. They further examined two separate 

preparations, one aqueous and one viscous. This was an important distinction, as the 

investigators demonstrated significantly improved homogeneous distribution throughout the 

bowel with the viscous solution. This translated to decreased susceptibility artifacts, 

improved general contrast effect, and improved organ delineation. In all, raters reported 

improved diagnostic information in about 70% of cases with the viscous formulation. There 

were no cases of worse image quality with the contrast reported. Again, the formulation was 

well tolerated. Less than 5% of patients reported any toxicity, which primarily included 

nausea and vomiting. There were no reported serious adverse events. Similar results were 

obtained in a second phase II study by Rinck et al.354 These authors reported improved 

diagnostic information from postcontrast images in 52% (16/31) of patients with no major 

side effects. There was minimal blurring or metallic artifacts with either the 0.25 or 0.5 g/L 

concentration of viscous Ferristene. The utility was further demonstrated by Van Beers et 
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al.355 They evaluated overall image quality and target/organ delineation in 30 patients with 

small bowel or pelvic lesions treated with viscous Ferristene. In their observation, 

postcontrast images showed better delineation of lesions, small bowel, and the paraaortics 

lymph nodes. However, there was no improvement in delineation of the colon or other 

pelvic organs including the iliac vessels, bladder, or genital tract. They concluded that 

perhaps inclusion of rectal contrast could potentially improve the utility for delineating 

pelvic organs and large bowel.

Ferristene, marketed as Abdoscan (Nycomed Imaging), was approved in Sweden for use as 

an oral contrast agent in 1993. Several other clinical studies have been completed with 

Ferristene.356–359 However, it never progressed to widespread use, and approval was never 

obtained outside of Europe. Manufacturing was discontinued by Nycomed in 2002.

6.2. Gold Nanoparticles

As evidenced from other formulations in this Review, most delivery systems in clinical use 

(particularly those for drug delivery) are based on liposomal or polymer platforms. 

However, colloidal elemental particles, such as gold, are also being investigated as clinical 

delivery systems. Gold is a naturally occurring, relatively inert (depending on the oxidation 

state) compound. Following absorption, 90–95% is bound to albumin or globulin where it 

can remain for several months. Excretion is primarily in the urine and feces. Faraday 

initially described the synthesis of nanosized gold particles in the mid 19th century. In the 

1950s, there was interest in utilizing radioactive colloidal gold for the treatment of cancer. 

While this was not successful with hematologic disease, two studies demonstrated some 

activity in the treatment of liver tumors, including disseminated reticulum cell 

sarcoma.360,361 Colloidal gold has also been used in the treatment of rheumatoid arthritis 

and more recently has been used fairly extensively for diagnostic purposes. We will not be 

reviewing diagnostic agents here. Instead, we will focus on the therapeutic translation of 

gold nanoparticles.

Preclinical studies demonstrated several potentially useful properties of gold nanoparticles, 

particularly in cancer therapy. Much of the preclinical literature highlighting NP gold as an 

anticancer therapy has been previously reviewed.362 Gold is a high-Z element (having a high 

number of protons and neutrons in its nucleus), and several studies have demonstrated that 

high-Z elements can improve the efficacy of radiotherapy. When exposed to electromagnetic 

radiation, excitation of electrons produces strong surface fields, which produce significant 

localized heat upon relaxation. This heat is sufficient to destroy surrounding tissues 

including tumors. One study has demonstrated that 1.9 nm gold NPs accumulate in EMT-6 

mammary carcinomas in mice and significantly increased the radiosensitivity of the 

tumors.363 Excitation of high-Z elements does not require high energy photons from a linear 

accelerator. A number of preclinical laser-based strategies, referred to as plasmonic 

photothermal therapy, have coupled different gold nanoparticle platforms (including 

nanospheres, nanoshells, nanorods, and nanocages) with phototherapy to produce antitumor 

effects.364–366 While these preclinical data are promising and exciting for the future 

translation of nanomedicine, there are no clinical studies that have successfully utilized gold 

NPs as a radiosensitizer or photothermal therapy agent. However, the potential utility of 
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gold NPs as drug delivery vehicles has been tested clinically. Gold nanoparticles can easily 

be conjugated to macromolecules, including proteins (TNFα),367 nucleic acids,368 and drugs 

(such as paclitaxel, doxorubicin, and cisplatin).369–371 Preclinical studies have demonstrated 

good intratumoral delivery of several different agents with expected therapeutic outcomes. 

While these preclinical results are promising, to date, only one (gold-conjugated TNF) has 

completed clinical testing.

6.2.1. CYT-6091 (Aurimune)—Tumor necrosis factor (TNFα) is a potent anticancer 

molecule. Signaling through TNFα results in the induction of a number of antitumor 

functions, including cell lysis, apoptosis, and pro-inflammatory pathways.372,373 

Unfortunately, exogenous administration of TNFα results in extreme side effects 

(hypotension, septic shock, etc.), which have largely limited its clinical utility, except in 

isolated limb perfusion.374 As reviewed in Paciotti et al., one solution to this problem was 

the conjugation of TNFα to colloidal gold NPs.367 While this reduced the toxicity of TNFα 

and improved tumor cell killing, the particles were quickly cleared by macrophages in the 

RES. To reduce detection, uptake, and clearance by the RES, a new formulation was 

created, which conjugated a thiol-derivitized PEG and recombinant TNFα on the gold NP 

surface. The resulting NPs have a mean diameter of approximately 30 nm. The new vector 

(PT-cAu-TNF) showed promising preclinical results. Paciotti et al. demonstrated that the 

addition of thiol-PEG improved the biodistribution (away from liver and spleen) of gold-

TNFα NPs. The combination NPs also had the greatest antitumor effect in mice bearing 

MC38 colon tumors with the lowest toxicity. A second study further demonstrated that in 

animals dosed with doses of NPs effective at shrinking tumors, TNFα rapidly and 

preferentially accumulates in the tumor, whereas the gold colloid gradually accumulates in 

the liver over 4–12 h and is slowly cleared over a period of months without significant 

toxicity.375 Yet another preclinical study also demonstrated that CYT-6091 potently 

improved hyperthermia-mediated tumor killing in mice bearing fibrosarcomas without 

increasing toxicity.376

Subsequently, a phase I study has been completed, which demonstrated the safety and 

feasibility of CYT-6091 in humans.377 This study included 30 patients with advanced or 

metastatic solid tumor malignancies refractory to standard therapy. Dosing was escalated 

from 50 to 600 μg/m2. The first two patients did not receive prophylactic antipyretics, and 

both experienced post-treatment fevers, which were self-limited (resolved without further 

treatment). Neither patient experienced hypotension or a severe side effect. All subsequent 

patients were pretreated with antipyretics. Transient hypotension was experienced in 62% of 

patients following treatment. However, this was mild, and all but two of the patients had 

diastolic blood pressure measurements in the normal range. Two patients had single diastolic 

blood pressure measurements outside of the normal range; however, these were transient and 

spontaneously resolved. There were no episodes of severe hypotension or other side effects, 

even at the highest doses tested. Other common side effects were mild and included 

lymphopenia, hypoalbuminemia, electrolyte disturbances, and increased plasma liver 

enzymes. As for efficacy, a partial response was observed in one patient and stable disease 

was observed in another four patients. The drug, marketed as Aurimune, is being 
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manufactured by Cytimmune (Chicago, IL), which is planning to continue development with 

future phase II studies to further demonstrate clinical efficacy.

6.3. Hafnium Oxide Nanoparticles

Hafnium oxide is another example of an inorganic metallic compound emerging as a unique 

nanoformulation. Nanoparticles of hafnium oxide possess unique properties, which are 

being utilized to enhance the therapeutic effectiveness of radiotherapy. Hafnium has a high 

atomic number (Z = 72), which makes it an attractive candidate as a radiosensitizing agent. 

When activated by radiation, hafnium oxide increases the electron density, and thus 

absorption, of the high-energy dose deposited within irradiated tissues. In addition, 

preclinical data have demonstrated that these particles are chemically inert with excellent 

local and systemic tolerance,378,379 thus potentially improving the therapeutic window of 

radiotherapy.

6.3.1. NBTXR3—NBTXR3 is a nanoparticle of hafnium oxide crystals currently in clinical 

development as a nanoradioenhancing agent. It is engineered as a 50 nm sphere, 

functionalized with a negative surface charge, and stabilized in an aqueous solution at pH 

between 6 and 8. It is unique among other nanoparticles in that it is directly injected into the 

tumor.379 As the tumor is irradiated, high energy photons from external beam radiotherapy 

are absorbed by tissues and generate electrons, which then activate the hafnium oxide 

nanoparticle. Once activated, NBTXR3 also emits high energy electrons, increasing the 

production of free radicals and other reactive oxygen species, and thus enhancing the ability 

of radiation to target and destroy cancer cells through double-stranded DNA damage. 

NBTXR3 is an inert particle, as it only emits high energy electrons during exposure to 

ionizing radiation.

Preclinical studies of NBTXR3 have shown that it enhances radiation doses 9-fold when 

compared to water exposure alone, and confirm dispersion and clustering of the 

nanoparticles within cancer cells, both at the periphery and in the center of the tumor. 

Importantly, there was persistence of the nanoparticles within the tumor, with little leakage 

outside the tumor to normal tissue. Furthermore, the combination of radiation and NBTXR3 

in the HT1080 cell line (a human fibrosarcoma model) showed enhanced antitumor activity, 

as demonstrated in vitro by the clonogenic cell survival assay and in vivo with HT1080 

xenograft tumors in nude mice. These findings were confirmed in both radioresistant and 

radiosensitive human cancer cell lines, although there was differential uptake of the 

nanoparticles observed between epithelial versus mesenchymal and glioblastoma cells.380 

Most importantly, there was no increase in toxicity in the treated xenograft animal models as 

compared to control animals.379

The above studies demonstrate the clear potential for the use of NP formulated hafnium 

oxide as a radiosensitizer. Currently, NBTXR is being studied in phase I clinical trials in 

combination with concurrent radiation for the treatment of soft tissue sarcomas 

(NCT01433068) and head and neck cancer (NCT01946867). NBTXR3 nanoparticles first 

entered clinical development in France in 2011. The hafnium oxide nanoparticles were 

injected directly into extremity soft tissue sarcomas. As the tumors are treated with 
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NBTXR3 and preoperative radiation prior to resection, this study will allow for pathologic 

evaluation of the tumor and surrounding normal tissue.381 In the head and neck cancer trial, 

patients 65 years and older with T3 or T4 squamous cell carcinoma of the oral cavity or 

oropharynx will receive either an intra-arterial or an intratumor injection of NBTXR3, 

followed by radiation therapy 24 h later, to assess dose limiting toxicity, safety, and 

tolerability of the nanomedicine. Both studies are currently recruiting participants and await 

published results.

7. Summary and Outlook

Nanomedicine has made a significant impact on the treatment of many human illnesses. 

However, we are still in the early stages of the clinical development of nanotechnology. 

Today, there are many nanotechnology-based diagnostics and therapeutics under clinical 

development. Furthermore, extensive preclinical research has provided key information on 

critical design criteria for nanomedicine development.

Although we are highly optimistic about the future of nanomedicine, the clinical translation 

of nanomedicine products faces several challenges. First, nanoformulations already exist for 

the “easy” drugs for nanoparticle drug delivery, such as amphotericin, doxorubicin, and 

paclitaxel. It would be very difficult to engineer new formulations of these drugs to provide 

additional clinical benefit. To reformulate other approved therapeutics, investigators must 

identify clear translation pathways where the nanoformulation can provide superior 

therapeutic efficacy over their small molecule counterparts. Overall, the clinical benefits of 

even the most successful nanoformulations of existing drugs (including Abraxane) have 

largely been realized through decreases in toxicity. Improvements in therapeutic efficacy 

have been much more modest, particularly when compared to the small number of very 

successful small molecule inhibitors and antibodies (including crizotinib and erlotinib for 

mutated NSCLC or Gleevec for (9:22)-translocated chronic myelocytic leukemia), which 

tend to target driver mutations as opposed to general cellular pathways. While 

nanoformulation can improve the delivery of existing drugs to tumors, it may not be able to 

circumvent many of the well-established mechanisms of chemoresistance, which limit the 

effectiveness of traditional chemotherapeutics. Because of the higher cost of 

nanoformulations, one must also consider conducting cost effectiveness analyses when 

devising the clinical translation strategies. A potential for nanomedicine is to utilize 

nanoparticle platforms in the development of new drugs. Instead of chemically modifying a 

lead compound to address drug delivery challenges such as solubility, the compound can be 

formulated with a nanoparticle. Another exciting area for nanomedicine is the delivery of 

nucleic acid therapeutics where a delivery vehicle is necessary. In addition to siRNA, 

several groups are working on the delivery of messenger RNA (mRNA) for treatment of 

genetic diseases such as cystic fibrosis. The success of these clinical programs can have 

paradigm-shifting effects on clinical medicine.
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Abbreviations

ABCD AmB colloidal dispersion

ABLC AmB lipid complex

ABV doxorubicin

AIDS acquired immunodeficiency syndrome

ALL acute lymphoblastic leukemia

AmB amphotericin B

AML acute myeloid leukemia
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ara-C arabinofuranosyl cytidine

AUC areas under the curve

BELI bupivacaine extended-release liposome injection

BV bleomycin and vincristine

CDDP cisplatin/cis-diamminedichloroplatinum

CE European Commission

CE cysticfibrosis

CI confidence interval

CKD chronic kidney disease

CPT-11 irinotecan

CR complete response

CRi CR with incomplete hematologic recovery

CSC central serous chorioretinopathy

CSF cerebrospinal fluid

DLT dose limiting toxicity

DPC dynamic polyconjugate

DMPC dimyristoyl phospitidylcholine

DMPG dimyristoyl phospitidylcglycerol

DSPG distearoyl phosphitidylcholine

EC epirubicin and cyclophosphamide

EPR enhanced permeability and retention

EREM extended-release epidural morphine

EU European Union

FDA Food and Drug Administration

FIM first-in-man

GBM glioblastoma multiforme

GOG Gynecologic Oncology Group

HAART highly active antiretroviral therapy

HCC hepatocellular carcinoma

HD hemodialysis

HF hemofiltration

HPMA N-(2-hydroxypropyl)methacrylamide
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HR hazard ratio

HSCT hematopoietic stem cell transplantation

HSPC hydrogenated soy phosphatidylcholine

IND investigational new drug

IDE investigational device exemption

KS Kaposi's sarcoma

LAmB liposomal AmB

LC liposomal cytarabine

LD nonpegylated liposomal formulation

LE-DT liposomal-encapsulated docetaxel

LED liposomally encapsulated daunorubicin

LEP-ETU liposome-encapsulated paclitaxel

LNP lipid nanoparticle

LVEF left ventricular ejection fraction

MBC metastatic breast cancer

MC LD and cyclophosphamide

MM multiple myeloma

mPEG-DDLLA monomethoxy poly(ethylene-glycol)-block-poly(D,L-lactide)

MPS mononuclear phagocytic system

MRI magnetic resonance imaging

mRNA messenger RNA

MS morphine sulfate

MTD maximum tolerated dose

mTOR mammalian target of rapamycin

Nab nanoparticle albumin-bound

NabP Nab-paclitaxel

NDA new drug application

NHL non-Hodgkin's lymphoma

NP nanoparticle

NSCLC non-small cell lung cancer

ORR overall response rate

OS overall survival
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PDT photodynamic treatment

PEG polyethylene glycol

PFS progression-free survival

PGA poly(L-glutamic acid)

Ph- philadelphia chromosome-negative

PI3-K phosphatidylinositol-3-kinase

PLA polylactic acid

PLD pegylated liposomal doxorubicin

PL-MLP mitomycin-C lipid-based prodrug formulated in pegylated liposomes

PMA premarket approval

PR partial response

PSMA prostate-specific membrane antigen

RCC renal cell carcinoma

RES reticuloendothelial system

RFA radiofrequency ablation

RNAi RNA interference

RP2D recommended phase 2 dose

SAEs serious adverse events

SCID severe combined immunodeficiency

SCLC small cell lung cancer

SHIV simian-human immunodeficiency virus

shRNA short hairpin RNA

siRNAs small interfering RNAs

SLN sentinel lymph nodes

sNDA supplemental NDA

SPARC secreted protein acidic and rich in cysteine

SPIONs superparamagnetic iron oxide nanoparticles

TLC-65 liposomal formulation of gentamicin

TNF tumor necrosis factor

TTP time to progression

VSLI vincristine liposome injection

USPIO ultrasmall SPION
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Figure 1. 
Doxorubicin levels in patients' tumor biopsies, comparing free DOX and DOXIL. Reprinted 

with permission from ref 26. Copyright 2012 Elsevier Ltd.
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Figure 2. 
Kaplan-Meier curves of survival for all randomized patients assigned to treatment with 

pegylated liposomal doxorubicin or topotecan. Reprinted with permission from ref 45. 

Copyright 2004 Elsevier Ltd.
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Figure 3. 
Rate of cardiac events versus cumulative anthracycline dose. Patients who had a baseline 

and at least one additional multigated blood-pool imaging (MUGA) scan during treatment. 

Cumulative percentage of events versus cumulative anthracycline dose, protocol-defined 

cardiac events. Reprinted with permission from ref 50. Copyright 2004 Oxford University 

Press. hazard ratio (HR) = 3.16; 95% confidence interval (CI) 1.58–6.31; P < 0.001; PLD, n 

= 254; doxorubicin, n = 255.
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Figure 4. 
Lipid amphotericin B formulations. DMPC, dimyristoyl phospitidylcholine; DMPG, 

dimyristoyl phospitidylcglycerol; HSPC, hydrogenated soy phosphatidylcholine; DSPG, 

distearoyl phosphitidylcholine. Reprinted with permission from ref 94. Copyright 1996 

Oxford University Press.
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Figure 5. 
SPIONs for biomedical application. Reprinted with permission from ref 316. Copyright 

2012 American Chemical Society.
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Table 1

Summary of the FDA Device Regulation Processa

step 1 determine whether the product is a medical device defined in section 201(h) of the FD&C Act

step 2 identify the device class class I

low risk of harm to the user

subject to general controls

typically exempt from premarket notification (i.e., “510(k)”)

class II

moderate risk of harm

subject to general and specific controls

typically requires 510(k)

class III

high risk of harm

typically requires premarket approval (i.e., “PMA”)

step 3 identify the premarket pathway 510(k) process

“substantial equivalence” to a legally marketed predicate device

PMA process

“reasonable assurance of safety and effectiveness” based on submitted 
studies

de novo request

for low-to-moderate risk devices that do not have a legally marketed 
predicate device

risk-based classification into class I or II

future devices of this type are reviewed in the 510(k) process

step 4 if clinical data need to be collected before 
commercialization, submit an investigational device 
exemption (IDE) application

allows manufacturers to collect safety and effectiveness data on an 
investigational device to support a future marketing submission (510(k), 
PMA, or de novo)

purpose of the IDE review is to ensure the safety and welfare of human 
research subjects

a
Reprinted with permission from ref 10. Copyright 2014 Elsevier Ltd.
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Table 2

In Vivo Uptake of Liposome-Entrapped 131I-Labeled Albumin by Normal and Malligant 

Human Tissuea

patient A patient B

tissue radioactivityb (cpm/g tissue)

trichloroacetic-acid 
precipitable 

radioactivity (% of 
total) radioactivityb (cpm/g tissue)

trichloroacetic-acid 
precipitable 

radioactivityc (% of 
total)

normal liverd 7504 21.5 13 200 45.0

tumor in liver 10 267 24.6 15 400 33.3

normal right kidney 9173 29.3

tumor in right kidney 441 000 95.0

normal spleen 4900 25.0

tumor in spleen 11 700 32.6

normal colon 13 200 32.8

tumor in colon 29 800 20.4

a
Reprinted with permission from ref 18. Copyright 1974 Elsevier Ltd.

b
Dosages injected were 21.0 × 107 cpm in patient A and 8.8 × 107 cpm in patient B as assayed from the injected preparation at the time of tissue 

counting.

c
Plasma radioactivity was more than 95% trichloroacetic acid precipitable at 10 min and 82.6% precipitable at 3 h when tissue was obtained 

(patient B).

d
Hepatic uptake of radioactivity (% of the injected dose) as measured by the hybrid whole-body scanner technique as follows: patient A, 81.0% at 

10 min; patient B, 75.0% and 66.0% at 2 and 50 min, respectively; patient C, 70.5% at 3 min and 41.0% at 6 h. There was no evidence of 
radioactivity uptake by bone marrow.

Chem Rev. Author manuscript; available in PMC 2016 October 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Min et al. Page 87

Table 3
Clinically Evaluated Liposomal Formulations of Cisplatin

formulation

L-NDDP SPI-77 lipoplatin LiPlaCis

particle size 1–5 μm 110 nm 110 nm NA

half-life in human (h) t1/2α = 0.8–21 min, t1/2β = 14–36 80–145 60–117 t1/2α = 3–5.5, t1/2β = 80–141

MTD (mg/m2) 312.5 420 300 120

clinical status phase II phase II phases II, III phase I
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Table 6
Completed Phase I/II Trials

cancer

tissue stage treatmenta studies/refs

breast metastatic NabP+Cisplatin 185

NabP+Bevacizumab 186

NabP+Gemcitabine 187,188

NabP+Lapatanib 189

NabP+Capcitabine 190

NabP+Bevacizumab+ddAC 191

NabP+Trastusimab 192

NabP+Trastusimab+Carbotaxol 193

locally advanced NabP+Gemcitabine+Epirubicin 194

NabP+5FU+Epirubicin+Cyclophosphamide 195

NabP+Carboplatin+Bevaciszumab+Herceptin 196

early stage operable NabP+Cyclophosphamide+Herceptin 197

NabP+Lapatanib 198

NabP+Bevacizumab+ddAC 199

NabP+ddAC 200

ovarian advanced NabP 201,202

NabP+Carbotaxol 203

NabP+Bevacizumab 204

lung advanced NabP+Gemcitabine 205

NabP+Pematrexid 206

NabP+Carboplatin+Bevacizumab 207

melanoma advanced NabP+Carboplatin 203,208

NabP+Carboplatin+Bevacizumab 209

NabP+Oblimerson+Temazolamide 210

pancreas advanced NabP+Gemcitabine+Capcitabine 211

NabP+Gemciabine+Bevacizumab 212

gastric unresectable NabP 213

GU urothelial NabP 214

bladder intravessicular NabP 215

prostate Pre-RP NabP 216

a
NabP: Nab-paclitaxel.
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Table 7
Ongoing Phase III Trials

cancer and stage treatment ClinicalTrials.gov ID

melanoma Nab vs Decarbazine NCT00864253

operable breast Nab vs Paclitaxol based neoadjuvant chemotherpay NCT01583426

operable breast Nab vs Paclitaxol based neoadjuvant chemo NCT01822314

operable breast Nab+EC or AC vs Paclitaxel+EC or AC

elderly operable breast EC vs CMF vs Capcitabine+Nab-Paclitaxel NCT01204437

recurrent or metastatic breast Bevacizumab+Pacliatxel vs Bev+ Nab-P vs Bev+ixabepalone NCT00785291

metastatic breast Nab-Paclitaxel+Gem Carbo vs Gem Carbo NCT01881230

advanced NSCLC Maintenance Nab-Paclitaxel following Nab-Pac+Carbo NCT02027428

unresectable pancreatic Nab-paclitaxol+FOLFIRNIOX+Gemcitabine+Capcitabine ±Algenepantucel-L NCT01836432

resected pancreatic Gem+Nab-Paclitaxel vs Gem NCT01964430
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Table 8
Polymer–Drug Conjugates in Clinical Use

drug (trade name) indications approval

PEG-adenosine deaminase (Adagen) severe combined immunodeficiency disease 1990

PEG-asparaginase (Oncaspar) acute lymphocytic leukemia 1994

Glatiramer Acetate (Copaxone) multiple sclerosis 1996

PEG-interferon alpha-2b (PegIntron) Hepatitis C 2001

PEG-interferon alpha-2a (Pegasys) Hepatitis B, Hepatitis C 2002

PEG-filgrastim (Neulasta) chemotherapy-associated neutropenia 2002

PEG-Visomant (Somavert) acromegaly 2003

PEG-aptanib (Macugen) wet age-related macular degeneration 2004

PEG-Fab' fragment of a humanized anti-TNF-
alpha antibody, CERTOLIZUMAB PEGOL 
(Cimzia)

Crohn's disease, rheumatoid arthritis 2008

PEG-loticase (Krystexxa) chronic gout, adults refractory to conventional therapy 2010

PEG-interferon beta-1a (SYLATRON) adjuvant treatment of melanoma with microscopic or gross nodal 
involvement within 84 days of definitive surgical resection 
including complete lymphadenectomy

2011

PEG-inesatide acetate (Omontys) erythropoiesis-stimulating agent for anemia due to chronic kidney 
disease in adults on dialysis

2012

PEG-interferon beta-1a (Plegridy) relapsing multiple sclerosis 2014

zinostatin stimalmer HCC approved in 
Japan 1994

Chem Rev. Author manuscript; available in PMC 2016 October 14.


