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Abstract

Novel agents are needed to improve chemoradiotherapy for locally advanced rectal cancer. In this 

study, we assessed the ability of CRLX101, an investigational nanoparticle-drug conjugate 

containing the payload camptothecin (CPT), to improve therapeutic responses as compared to 

standard chemotherapy. CRLX101 was evaluated as a radiosensitizer in colorectal cancer cell lines 

and murine xenograft models. CRLX101 was as potent as CPT in vitro in its ability to 

radiosensitize cancer cells. Evaluations in vivo demonstrated that the addition of CRLX101 to 

standard chemoradiotherapy significantly increased therapeutic efficacy by inhibiting DNA repair 

and HIF-1α pathway activation in tumor cells. Notably, CRLX101 was more effective than 

oxaliplatin at enhancing the efficacy of chemoradiotherapy, with CRLX101 and 5-fluorouracil (5-

FU) producing the highest therapeutic efficacy. Gastrointestinal toxicity was also significantly 

lower for CRLX101 compared to CPT when combined with radiotherapy. Our results offer a 

preclinical proof of concept for CRLX101 as a modality to improve the outcome of neoadjuvant 

chemoradiotherapy for rectal cancer treatment, in support of ongoing clinical evaluation of this 

agent (LCC1315 NCT02010567).

Introduction

It is estimated that 40,000 patients are diagnosed with rectal cancer, and that approximately 

22,000 patients die from this disease in the United States each year (1). While some patients 

present with early disease that can be cured with surgical resection alone, many patients 

present with locally advanced disease (T3, and/or N+) that requires neoadjuvant 

chemoradiotherapy (CRT) followed by surgical resection (2). The standard neoadjuvant CRT 

regimen consists of administering either infusional 5-fluorouracil (5-FU) or oral 
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capecitabine with approximately 50 Gy of radiotherapy to the pelvis. In addition to 

neoadjuvant CRT, postoperative CRT has also proved beneficial (3). A few clinical trials 

have shown that rectal cancer patients receiving CRT after surgical resection demonstrate 

reduced rates of local recurrence and improved survival when compared to patients receiving 

surgery alone (4–6). For these reasons, CRT represents an important treatment strategy for 

rectal cancer.

A number of studies have suggested that CRT alone may be an effective rectal cancer 

treatment strategy. Several large randomized trials have demonstrated that 8–25% of patients 

receiving only CRT achieve a pathologic complete response (pCR) (7–13). Importantly, 

patients who achieve a pCR also achieve improved overall and recurrence free survival (14–

16). Moreover, recent clinical studies have suggested that surgery can be omitted in patients 

with pCR to preserve organ integrity and quality of life (17). Therefore, identifying 

therapeutic agents that can be combined with standard CRT to improve the pCR rates of 

rectal cancer patients has been an active area of research (18).

Many clinical trials have evaluated whether pCR rates of CRT can be improved via the 

inclusion of additional therapeutic agents to 5-FU and radiotherapy. Specifically, trials have 

evaluated the effect of adding chemotherapeutics (oxaliplatin and irinotecan) and targeted 

antibodies (bevacizumab and cetuximab) to standard CRT. Clinical studies evaluating the 

addition of oxaliplatin (Ox) to standard CRT showed increased toxicity with no added 

therapeutic benefit (12,19). Although some trials have shown that the addition of irinotecan 

improves pCR rates in rectal cancer patients (20), the clinical adoption of this treatment 

strategy was prevented by unacceptable off-target toxicity (21,22). The use of targeted 

therapies such as bevacizumab and cetuximab with standard CRT has yielded mixed results 

and, therefore, has not been integrated into standard treatment regimens (9). Consequently, 

there remains great interest in the development of novel agents that can be combined with 

established CRT regimens to improve rectal cancer treatment.

Inhibitors of topoisomerase 1 (topo-1), including the marketed drugs irinotecan and 

topotecan, are well known radiosensitizers (23). Irinotecan is highly effective against 

colorectal cancer, but it produces unacceptable gastrointestinal (GI) toxicity when combined 

with radiotherapy (20). Camptothecin (CPT) has been shown to be an effective treatment for 

rectal cancer in preclinical studies, but it could not be developed clinically because it was 

not well tolerated. The recent clinical development of CRLX101, an investigational 

nanoparticle-drug conjugate containing the payload CPT, offers a unique opportunity to 

improve CRT for rectal cancer. CRLX101 is a nanoparticle consisting of CPT (10% by 

weight) conjugated to a biocompatible copolymer of cyclodextrin and polyethylene glycol 

(PEG) (24). CRLX101 nanoparticles have diameters ranging from 20 to 30 nm and a slightly 

negative ζ–potential (−5 mV) (24). Physiologically, CRLX101 has been shown to be a 

potent inhibitor of topo-1 and hypoxia-inducible factor-1 alpha (HIF-1α), a signaling 

molecule that promotes radioresistance in cancer cells (24–26). Currently, CRLX101 is 

being evaluated in phase II trials as both a monotherapy and in combination with other anti-

cancer drugs as a treatment strategy for several tumor types (27).
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CRLX101 has several attractive properties that may improve CRT. First, CRLX101, as a 

nanoparticle, preferentially accumulates in tumors through the enhanced permeability and 

retention (EPR) effect (28,29). Secondly, CRLX101 has not demonstrated any significant GI 

toxicity to date (27, 30). Thirdly, CRLX101 has a long circulation time (circulation half-life 

of 17.2 h) (31). In addition, CRLX101 releases CPT in a prolonged fashion, which is 

particularly conducive for radiosensitization during fractionated radiotherapy (16). Lastly, 

CRLX101 has the potential to promote radiosensitization through two independent 

mechanisms, inhibition of topo-1 and HIF-1α (25).

Given the radiosensitizing potential that CPT has demonstrated in preclinical studies, we 

hypothesized that the efficacy of standard CRT would be significantly improved by the 

addition of CRLX101. Therefore, we evaluated whether the addition of CRLX101 to 5-FU 

and radiotherapy could improve rectal cancer treatment using preclinical rectal cancer 

models. Our study supports the ongoing clinical investigation of CRLX101 in rectal cancer 

CRT.

Materials and Methods

Materials

CRLX101 was provided by Cerulean Pharma Inc. (Cambridge, MA). Each gram of 

CRLX101 contained 100 mg of CPT. CRLX101 was re-suspended in phosphate buffer 

saline. Camptothecin was purchased from ACROS Organics (Fair Lawn, NJ). 5-Fluorouracil 

(5-FU) and Oxaliplatin (Ox) were purchased from Sigma-Aldrich.

Mice

Nu/Nu mice (male, 7–8 weeks old) were obtained from the animal colony at the University 

of North Carolina (UNC) Lineberger Comprehensive Cancer Center (LCCC). C57BL/6J 

mice (male, 8 weeks old) were purchased from The Jackson Laboratory (Bar Harbor, ME). 

All animal experiments were performed in accordance with guidelines from the UNC 

Institutional Animal Care and Use Committee.

Cell Culture

Human colorectal cancer cell lines HT-29 (ATCC batch F-9246) and SW480 cells (ATCC 

batch 7265) were obtained from the Tissue Culture Facility at the LCCC at UNC in 2014. 

Cell line authentication was performed via short tandem repeat in 2014. The luciferase-

expressing cell line HT-29-luc2 was purchased from Caliper Life Sciences (Hopkinton, MA) 

in 2014. All cell lines were used within 10 passages after initial plating. HT-29, SW480, and 

HT-29-luc2 cells were cultured at 37°C in 5% CO2 humidified atmosphere in Dulbecco’s 

Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12) (Gibco) supplemented with 

10% (vol/vol) fetal bovine serum (Gibco) and 1% penicillin/streptomycin (Gibco).

X-Ray Irradiation

Cells and mice were irradiated using a Precision X-RAD 320 (Precision X-Ray, Inc) 

machine operating at 320 kVp and 12.5 mA. For tumor growth assays, a 3 mm lead shield 

protected the mice’s vital organs, and the left flank remained exposed during irradiation. In 
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order to test hair loss toxicity, a 0.5 cm thick bolus covered the left dorsal region of the mice 

during irradiation to enhance the skin dose. For GI toxicity, the entire pelvic region was 

irradiated while a 3mm lead shield protected the legs, upper abdomen, thoracic region, and 

head of the mouse.

Cell Viability Assay

Cells were seeded at 10,000 cells/well in 96-well plates. Cells were treated with CRLX101, 

CPT, or PBS (control) for 24 hours, washed with PBS after incubation, and incubated in 

fresh, complete medium for 24 hours. Following incubation, MTS [(3-(4,5-

dimethylthiazol-2-yl)-5-(3-car- boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)] 

cell proliferation assays were performed according to manufacturer protocols using the 

CellTiter 96® Aqueous One Solution Cell Proliferation assay kit (Promega).

Clonogenic Assay

A monolayer of cancer cells was treated with 10 µM CRLX101 (CPT equivalents), 10 µM 

CPT, or PBS (control) for 24 hours, washed with fresh media, and then irradiated at 0, 1, 2, 

4, or 6 Gy. After treatment, cells were plated into 25mL flasks at densities ranging from 100 

to 250,000/plate. Cells were incubated for 13 days, fixed, and then stained with 4% 

formaldehyde /80% methanol /0.25% crystal violet (Fisher Scientific). All colonies 

containing 30 or more cells were counted. Plating efficiency (PE) was determined for each 

cell line. Surviving fraction (SF) was calculated using the formula [# of colonies/(# of plated 

cells)(PE)]. SF was plotted against radiation dose on a log scale. The linear-quadratic 

formula [SF=e−αD−βD2] was used to generate survival curves using R package “CFAssay”.

In Vitro Histone H2AX Phosphorylation and HIF-1 α Inhibition

HT-29 cells were irradiated with 2 Gy, washed with PBS, and then treated with 10 µM CPT, 

CRLX101, or PBS (control) diluted in culture medium. After 1, 12, or 48 h, the cells were 

processed for either immunofluorescence or western blot analysis.

Western Blot

Cells were lysed in RIPA lysis buffer (25mM Tris-HCl (pH 7.6), 150mM NaCl, 1% NP-40, 

1% sodium deoxycholate, 0.1% SDS) supplemented with a protease and phosphatase 

inhibitor cocktail (Thermo Scientific) at the indicated times post irradiation. Protein 

concentration was determined using bicinchoninic acid protein assay (Pierce). The primary 

antibodies used were anti-Human HIF-1α (Novus Biologicals, Cat #NB100-479), VEGF 

(A-20) (Santa Cruz Biotechnology, Cat #sc152), and β-Actin (Cell Signaling, Cat #4970). 

The secondary antibodies used were anti-Rabbit or anti-Mouse IgG HRP-linked antibodies 

(Cell Signaling). The intensity of protein bands on the western blot image was quantified 

using Image J software. Ratios of HIF-1α and VEGF protein levels after β-Actin 

normalization were calculated from three independent experiments.

Immunofluorescence

Cells were fixed in 4% formaldehyde for 30 min, rinsed with PBS, and incubated in goat 

blocking solution (2% goat serum, 1% BSA, 0.1% Triton X-100, and 0.05% Tween 20) or 
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5% BSA blocking solution for 1 hour. After blocking, cells were stained with anti-Human 

HIF-1α (BD Transduction Laboratories, Cat #610958) or anti-Phospho-Histone H2AX 

(Ser139) antibodies (Millipore, Cat #05-636) for 1 hour at room temperature. Cells were 

then washed with PBS and further incubated with secondary antibody Alexa Fluor 568 Goat 

anti-Mouse IgG antibody (Molecular Probes, Cat #A11004) or Alexa Fluor 594 Donkey 

anti-Mouse IgG antibodies (Molecular Probes, Cat #A21203) for 30 min. After washing, 

cells were mounted using ProLong Gold Antifade Mountant with DAPI (Molecular Probes, 

Cat #P36935). HIF-1α immunofluorescent images were acquired using an Olympus BX61 

fluorescence microscope (40× objective lens). γH2AX immunofluorescent images were 

acquired using a Zeiss LSM 700 laser scanning confocal microscope with z-stack sectioning 

(63× oil immersion objective lens). To minimize the overlap of foci, images were stacked by 

maximum intensity projection. The number of γH2AX foci per cell was counted using 

Image J software.

Immunohistochemistry of Tissue Sections

For immunohistochemical studies of tumor xenografts, HT-29 cells (1 × 106 cells in 200 µL 

in 1:1 DMEM/F12 and Matrigel) were inoculated subcutaneously into the left dorsal flanks 

of 8-week-old male Nu/Nu mice. Eleven days after inoculation, mice were treated with 

CRLX101 (5 mg/kg), CPT (5 mg/kg) or PBS (control) and given a single 5 Gy dose of 

radiation 1 hour later. Mice were sacrificed at 1 and 7 days after radiation treatment, and 

tumor samples were harvested for histology. Tumors were fixed in 4% formaldehyde for 24–

48 hours at 4°C, paraffin embedded, and cut into 6 µm sections. For GI toxicity assays, 

colons were flushed with PBS and fixed overnight in 4% PFA. Tissues were then transferred 

to 30% sucrose for 24 hours, cut longitudinally, “swiss rolled”, and embedded in Optimal 

Cutting Temperature (OCT) compound. Using a cryotome, 8 µm sections of OCT embedded 

tissues were taken and placed onto microscope slides. Sections were immersed in blocking 

solution (2% goat serum, 1% BSA, 0.1% Triton X-100, and 0.05% Tween 20) for 1 hour. 

After blocking, sections were incubated with primary antibodies overnight at 4°C. Three 

primary antibodies were used: CAIX Antibody (H-120) (Santa Cruz, sc-25599), VEGF 

Antibody (A-20) (Santa Cruz, sc-152), and Cleaved Caspase-3 (Asp175) (Cell Signaling, 

9661). The secondary antibodies used were Alexa Fluor 594 Goat anti-Rabbit IgG Antibody 

or Alexa Fluor 568 Goat anti-Mouse IgG Antibody (Molecular Probes). Slides were 

mounted using ProLong Gold Antifade Mountant with DAPI (Molecular Probes, Cat 

#P36935). Images were acquired using a Zeiss LSM 700 Confocal microscope.

GI Toxicity

C57BL/6J mice were intravenously injected with 1 dose of CRLX101 (5 mg/kg), CPT (5 

mg/kg), or PBS (control) and given 3 fractions of radiation at 5 Gy daily (15 Gy total). 

Tissues were then collected, processed, and stained for Cleaved Caspase 3. Toxicity was 

evaluated at 2, 4, and 14 days after treatment by quantifying the number of Cleaved 

Caspase-3 positive cells per crypt unit. A minimum of 50 crypt units were quantified for 

each sample.
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Hair Toxicity

C57BL/6J mice were intravenously injected with a single intravenous dose of CRLX101 5 

mg/kg), CPT (5 mg/kg), or PBS (control) and sequentially subjected to a radiation dose of 

15 Gy (1 fraction). After 49 days, mice were evaluated for hair loss.

In Vivo Drug Efficacy

Tumors were established by subcutaneous injection of cancer cells suspended in 200 uL 1:1 

DMEM:F12 and Matrigel into the left dorsal flank of 6- to 8-week-old male Nu/Nu mice. 

For HT-29 tumor xenografts, 1 × 106 cells were injected. For SW480 tumor xenografts, 2.5 

× 106 cells were injected. Treatment began ten days after tumor inoculation, or when tumors 

reached 100 to 150 mm3. Mice were weighed and randomly sorted into treatment groups (8–

10 mice per group). To evaluate drug efficacy of CRLX101 as a radiosensitizer in vivo, a 

single dose of CRLX101 (5 mg/kg) with or without 5-FU (20 mg/kg) was administered by 

tail-vein intravenous (I.V.) injection. To evaluate CRLX101 plus 5-FU combined 

chemoradiotherapy with other combination regimens, CRLX101 (5 mg/kg), oxaliplatin (16.7 

mg/kg, equivalent to 50 mg/m2 in human), and/or 5-FU (20 mg/kg) were administered to 

tumor bearing mice via tail-vein I.V. injection. Mice were irradiated with three fractions of 

radiation at 5 Gy (15 Gy total) daily. The first fraction of radiation was administered one 

hour after injection. Tumor volumes were determined by measuring two perpendicular 

diameters, a and b, using the formula [V = 0.5 × a × b2] (a and b represent the long and short 

perpendicular diameters respectively). Measurements were recorded every 2 to 3 days using 

a digital caliper. The relative tumor size was defined by V/V0, where V represents the tumor 

volume over time and V0 represents the initial tumor volume. Mice were euthanized when 

the tumor volume reached 5 times the initial volume.

Cell Repopulation Assay

HT-29 cells were treated with CRLX101 (37.5 ng/mL), 5-FU (0.15 µg/mL), CRLX101 + 5-

FU (37.5 ng/mL and 0.15 µg/mL, respectively), or PBS (control) for 48 hours and irradiated 

with 4 Gy. After treatment, 1 × 105 treated HT-29 cells were mixed and seeded with 1000 

untreated HT-29-luc2 cells in 6 well plates. Luciferase activity was recorded every 2 to 3 

days over 13 days using IVIS Kinetic Optical System (Caliper Life Sciences). Images were 

taken 10 min after adding D-luciferin substrate solution (System Biosciences).

Statistical Analysis

Results from histological analysis, western blot assays, and MTS assays were statistically 

assessed by either one-way or two-way ANOVA followed by Tukey's honestly significant 

difference post hoc test (if a positive F test was detected). For clonogenic assays, linear-

quadratic cell survival curves were analyzed using R package “CFAssay”. For tumor growth 

curve and luciferase activity experiments, we used area under the growth curve (AUC). The 

Wilcoxon rank sum test was used to compare the growth rates as previously described (32). 

P-values less than 0.05 were considered significant.
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Results

CRLX101 is a potent radiosensitizer in vitro

CRLX101 was evaluated as a radiosensitizer in vitro using two colorectal cancer cell lines: 

HT-29 and SW480. To determine the direct cytotoxic impact of CRLX101 on each cell line, 

we generated dose-response curves in the absence of radiation (Figure 1A). We found that 

the direct cytotoxicity of CRLX101 was generally lower than the cytotoxicity of CPT. The 

IC50 values of CRLX101 were higher for both HT-29 and SW480 cells. Additionally, 

SW480 cells treated with CRLX101 demonstrated higher rates of survival across all 

treatment concentrations when compared to cells treated with CPT (Figure 1A). We then 

compared the radiosensitizing effects of CRLX101 and CPT using radiation survival curves. 

We found that CRLX101 and CPT both act as potent radiosensitizers in HT-29 and SW480 

cells (Figure 1B). Sensitization enhancement ratios (SER) were calculated as the ratio of 

doses required to achieve 10% surviving fraction of cells. The SERs for CPT were 2.2 for 

HT-29 and 1.5 for SW480. At equivalent drug concentrations, the SERs for CRLX101 were 

2.3 for HT-29 and 1.3 for SW480.

CRLX101 inhibits DNA damage repair

The induction of DNA double strand breaks (DSBs) by ionizing radiation or cytotoxic 

agents causes histone variant H2AX to become rapidly phosphorylated at serine 139 

(γH2AX) and to form discrete nuclear foci. To examine if CRLX101 inhibits DNA repair 

following radiation damage, γH2AX foci formation and persistence was analyzed using 

immunofluorescence. At 1 hour following radiation damage, we observed equivalent 

γH2AX foci formation in all treatment conditions (Figure 2A). At 12 hours following 

radiation damage, we observed a significant decrease in the number of γH2AX foci in 

untreated control cells, suggesting successful DNA repair. In contrast, we observed an 

increase in the number of γH2AX foci in cells treated with either CRLX101 or CPT 

(p<0.001) (Figure 2B). These results indicate that CRLX101 and CPT promote 

radiosensitization by directly inducing additional DNA damage and/or inhibiting DNA 

repair.

CRLX101 inhibits radiation induced HIF-1α activation in vitro and in vivo

Cancer cells evade radiation-induced apoptosis in part through activation of HIF-1α 
signaling (33,34). To examine the effect that CRLX101 has on HIF-1α signaling after 

radiation damage, we assessed HIF-1α expression levels in HT-29 cells following 

radiotherapy. At 1 hour following radiation damage, control cells and cells treated with 

either CRLX101 or CPT all demonstrated similar HIF-1α expression levels (Figure 3A and 

3B). At 12 hours following radiation damage, however, the expression of HIF-1α was 

significantly lower in cells treated with either CPT or CRLX101 when compared to levels of 

HIF-1α present in control cells (Figure 3A). We found that the expression of HIF-1α was 

suppressed by CRLX101 for at least 48 hours, as shown by western blot analysis (Figure 

3B).

HIF-1α directly up-regulates the expression of genes that are involved in tumor angiogenesis 

(e.g. VEGF), pH balance (e.g. CAIX), and glucose metabolism (25,35). To determine the 
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effect of CRLX101 on downstream HIF-1α signaling, we assessed the expression of VEGF 

and CAIX in tumors using immunofluorescence. Mice bearing HT-29 xenograft tumors were 

treated with CRLX101, CPT, or PBS (control) and then irradiated. One day following 

treatment, we observed similar levels of VEGF expression in tumors from control animals 

and animals treated with either CPT or CRLX101 (Figure 3C). Seven days following 

treatment, however, we found that tumors from mice treated with either CPT or CRLX101 

showed significantly less VEGF expression when compared to tumors taken from control 

animals (Figure 3D). In addition to VEGF expression, we also assessed the expression of 

CAIX. We found that tumors from control animals and animals treated with CPT 

demonstrated prominent CAIX expression at 1 and 7 days after treatment. In contrast, we 

found that tumors from animals treated with CRLX101 demonstrated a modest reduction of 

CAIX expression at 1 day post-treatment followed by a more prominent reduction of CAIX 

expression at 7 days post-treatment (Figure 3C and 3D).

CRLX101 is a potent radiosensitizer and improves 5-FU-based rectal cancer 
chemoradiotherapy in xenograft models

We next sought to evaluate the efficacy of CRLX101 as a radiosensitizer in vivo. Given that 

5-FU is part of the standard CRT regimen for rectal cancer, we assessed the therapeutic 

efficacies of combining radiotherapy with CRLX101, 5-FU, or CRLX101 and 5-FU using 

murine rectal cancer xenograft models. We chose a flank xenograft model over an orthotopic 

model for the ease of measuring tumor volume over time. Immunodeficient mice bearing 

either HT-29 or SW480 xenografts were treated with a single dose of chemotherapy 

followed by three daily fractions of radiotherapy (5 Gy × 3). In SW480 xenografts, 

radiotherapy combined with CRLX101 delayed tumor growth more than radiotherapy 

combined with 5-FU (CRLX101+XRT vs. 5-FU+XRT: p-value = 0.0006) (Figure 4B). In 

mice bearing HT-29 tumor xenografts, the greatest therapeutic efficacy was observed when 

CRLX101 and 5-FU were combined with radiotherapy (5-FU+CRLX101+XRT vs. 

CRLX101+XRT: p-value = 0.001) (Figure 4A). Our results show that the addition of 

CRLX101 to 5-FU-based CRT significantly improves the therapeutic index.

While oxaliplatin (Ox) has been studied extensively in rectal cancer CRT, clinical studies 

suggest that it does not enhance the therapeutic index of standard CRT regimens. To 

determine whether CRLX101 enhances standard rectal cancer CRT more than Ox, we 

assessed the therapeutic efficacies of combining radiotherapy with 5-FU, 5-FU and Ox, and 

5-FU and CRLX101 using HT-29 and SW480 murine xenograft models. As shown in Figure 

4C and 4D, the slowest tumor growth was observed in animals treated with radiotherapy and 

both 5-FU and CRLX101. Consistent with clinical studies, the addition of Ox to 5-FU CRT 

did not improve the therapeutic efficacy of standard CRT. These data suggest that CRLX101 

acts synergistically with 5-FU to suppress tumor growth.

5-FU can inhibit tumor repopulation after CRLX101-based CRT

To determine why the combination of CRLX101 and 5-FU CRT had the highest therapeutic 

efficacy in vivo, we examined the effect of different CRT regimens on repopulation rates of 

untreated HT-29 cells in vitro using a previously established repopulation assay (36). 

Briefly, we mixed a small number of untreated, luciferase-labeled HT-29 (HT-29-luc2) cells 
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with a larger number of treated, unlabeled HT-29 cells and assessed the growth rate of 

untreated HT-29-luc2 cells via luciferase activity over time (Figure 5A). Note that there is a 

strong linear correlation between bioluminescence and HT-29-luc2 cell numbers 

(R2=0.9953) (Supplementary Figure S1). When compared to cells treated with PBS or 5-FU 

plus radiation, cells treated with CRLX101 and radiation or the combination of CRLX101, 

5-FU, and radiation significantly increased the proliferation rate of co-cultured untreated 

HT-29-luc2 cells (Figure 5B). These results indicate that cells treated with CRLX101 or 

CRLX101 and 5-FU promote accelerated repopulation. Importantly, untreated HT-29-luc2 

cells co-cultured with cells treated with 5-FU and CRLX101 demonstrated a lower 

proliferation rate when compared to cells co-cultured with cells treated with CRLX101 

alone (p-value = 0.049) (Figure 5B and 5C). These results suggest that by limiting 

accelerated cell repopulation, the combination of CRLX101, 5-FU, and radiation has a 

greater therapeutic efficacy than CRLX101 plus radiation in vivo.

CRLX101 has low in vivo toxicity

We evaluated the toxicity profile of CRLX101-based CRT by investigating hair toxicity of 

CRLX101-based CRT in mice. We compared the toxicity profile of combining radiotherapy 

with CRLX101, CPT or PBS (control). At 49 days post irradiation, we observed hair change 

in 75% of CRLX101 treated animals, 100% of CPT treated animals, and 57% of animals 

receiving PBS (Supplementary Figure S2). Mice treated with either CRLX101 or PBS and 

radiotherapy exhibited no alopecia. In contrast, we observed alopecia in 43% of mice treated 

with CPT and radiotherapy (Supplementary Figure S2).

Gastrointestinal toxicity is one of the most commonly encountered and clinically relevant 

toxicities experienced during CRT in rectal cancer patients. To evaluate GI toxicity, we 

quantified the number of cells undergoing radiation induced apoptosis in the colonic tissues 

of animals receiving PBS, CPT, or CRLX101 and fractionated radiation (5Gy × 3) by 

immunostaining for Cleaved Caspase 3, a marker of apoptosis. We found that animals 

treated with radiotherapy and CPT or CRLX101 demonstrated higher GI toxicities than 

animals treated with radiation only. Importantly, the GI toxicity observed in animals treated 

with radiotherapy and CRLX101 was significantly lower than animals treated with 

radiotherapy and CPT (Figure 6A). Notably, animals in all treatment arms demonstrated 

normal colonic morphology at 14 days post treatment (Figure 6B).

Discussion

The recent development of CRLX101, a nanoparticle-drug conjugate containing CPT as the 

payload, offers a unique opportunity to revisit the use of topo-1 inhibitors in CRT for rectal 

cancer treatment. This development may facilitate the clinical translation of CPT into CRT 

regimens for rectal cancer. Clinical trials have demonstrated that CRLX101 has a favorable 

toxicity profile and its dual function (inhibition of both topo-1 and HIF-1α) makes it a 

promising radiosensitizer for use in CRT.

Although CPT is known to be a potent radiosensitizer (37), incorporation of CPT into a 

nanoparticle formulation may affect its radiosensitizing efficacy. Hence, we first examined 

the potency of CRLX101 as a radiosensitizer in vitro. We found that CRLX101 is as 
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effective as free CPT at radiosensitizing rectal cancer cells in vitro. We did not find 

CRLX101 to be superior to CPT in in vitro radiosensitization, since the EPR effect is an in 
vivo phenomenon. Inhibition of post-radiation DNA repair is one mechanism responsible for 

radiosensitization. CPT is known to promote radiosensitization by inhibiting topo-1 and 

directly causing DNA damage while preventing successful DNA repair. Consistent with this 

mechanism, we found that CRLX101 promotes radiosensitization in part by promoting the 

formation and persistence of radiation induced DSBs. Another mechanism for promoting 

radiosensitization is by inhibiting pro-survival pathways. Given that radiotherapy is known 

to induce HIF-1α signaling, a pathway that promotes radio-resistance in cancer cells 

(25,38), we examined the effect of CRLX101 on HIF-1α activity following radiation 

damage. Consistent with previous studies investigating the effects of combining CRLX101 

with bevacizumab, our data showed that CRLX101 inhibits HIF-1α up-regulation in a 

prolonged manner (38). Importantly, HIF-1α inhibition resulted in reduced expression of 

downstream HIF-1α signaling targets, including CAIX and VEGF (25). Although both CPT 

and CRLX101 inhibit radiation induced HIF-1α expression, CRLX101 led to a more 

sustained inhibition of HIF-1α expression, likely due to prolonged CPT release.

Since HIF-1α has been implicated in promoting resistance to radiotherapy (34), the ability 

of CRLX101 to inhibit HIF-1α in addition to topo-1 has the potential of increasing the 

efficacy of rectal cancer CRT. We validated our in vitro findings using a subcutaneous 

mouse xenograft model of rectal cancer, a model that has been widely used in preclinical 

studies. We demonstrated that CRLX101 is indeed a potent radiosensitizer in vivo. We also 

found that in HT-29 and SW480 xenografts, the administration of a CRT regimen containing 

both 5-FU and CRLX101 had the highest therapeutic efficacy. This finding suggests that the 

optimal CRT regimen for rectal cancer treatment should include both CRLX101 and 5-FU. 

We hypothesized that 5-FU enhanced the efficacy of CRLX101-based CRT by preventing 

accelerated repopulation inhibition. Accelerated repopulation following radiotherapy is a 

well-known phenomenon that contributes to the local recurrence of tumors (39). During 

accelerated repopulation, growth-stimulating signals from dying cells promote rapid 

proliferation of surviving tumor cells after treatment (36,40). To examine this possibility, we 

utilized an established repopulation assay and found that while CRLX101-based CRT 

treatment promoted accelerated repopulation, the addition of 5-FU to CRLX101-based CRT 

negated this effect. These data suggest that 5-FU acts synergistically with CRLX101 in vivo 
to suppress tumor growth after CRT by inhibiting accelerated repopulation. Taken together, 

these preclinical findings support the clinical use of CRT treatment regimens that contain 

both 5-FU and CRLX101.

Although promising in preclinical studies, clinical trials investigating the use of Ox in rectal 

cancer CRT have not shown sufficient enhancement of CRT efficacy to support its use. 

Consistent with previous data, the addition of Ox to 5-FU-based CRT did not improve 

therapeutic efficacy in our mouse xenograft model of rectal cancer. Importantly, we found 

that combining radiotherapy with CRLX101 and 5-FU is significantly more effective than 

combining radiotherapy with Ox and 5-FU. These in vivo results provide strong evidence to 

support clinical testing of CRLX101 as an additive to standard rectal cancer CRT. While 

these results are encouraging, it is important to point out that other factors, such as 

chemotherapeutic bioavailability, may have influenced the outcome of this preclinical study.
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Lastly, we also examined the potential toxicity of CRLX101-based CRT to normal tissues in 
vivo. Radiation elevates vascular permeability within both tumor and normal tissues (41–

43). We assessed the effect that adding CRLX101 to radiotherapy had on GI toxicity by 

examining apoptosis rates in colonic tissues shortly following radiation damage. We found 

that the addition of CRLX101 to radiotherapy resulted in lower rates of radiation-induced 

apoptosis when compared to animals treated with CPT and radiotherapy. There was, 

however, some evidence of GI toxicity in animals treated with CRLX101 and radiotherapy, 

possibly due to increased vascular permeability following radiation damage. In addition to 

evaluating GI toxicity, we also evaluated mouse hair toxicity as a surrogate for skin and 

mucosal surface toxicity. We demonstrated that while the addition of CRLX101 did increase 

hair toxicity, the effect is mild. We hypothesize that this finding will not be clinically 

significant.

In summary, these preclinical data demonstrate that CRLX101 is a potent radiosensitizer 

with the potential of improving rectal cancer CRT. CRLX101 functions by inhibiting both 

topo-1 and the HIF-1α signaling. Our data indicate that CRLX101 and 5-FU may be an 

optimal CRT regimen for rectal cancer treatment. Our preclinical data support the ongoing 

Phase Ib/II clinical trial, LCCC1315, titled “Neoadjuvant Chemoradiotherapy with 

CRLX-101 and Capecitabine for Rectal Cancer” (ClinicalTrials.gov Identifier: 

NCT02010567).
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Figure 1. 
Direct cytotoxicity and radiosensitization potential of CRLX101 treatment in vitro. (A) Cell 

viability of HT-29 and SW480 cells following 24 hours of CRLX101 or CPT treatment. (B) 

Clonogenic survival curves of HT-29 and SW480 cells treated with CRLX101 or CPT and 

radiation.
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Figure 2. 
Effect of CRLX101 treatment on radiation-induced DSB repair. (A) γH2AX foci formation 

(red) in nuclei (blue) of HT-29 cells following treatment with radiation and PBS (Control), 

CPT, or CRLX101. Scale bar = 10 µm. (B) Quantification of the number of γH2AX foci 

present in (A). ****p-value<0.001.
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Figure 3. 
Effect of CRLX101 on HIF-1α signaling following radiation. (A) Time course of HIF-1α 
expression (red) in the nuclei (blue) of HT-29 cells following treatment with radiotherapy 

and PBS (Control), CPT, or CRLX101. Scale bar = 16 µm. (B) Quantification of HIF-1α 
and VEGFA protein expression in HT-29 cells at various time points following treatment 

with radiation and PBS (Control) or CRLX101. (C-D). VEGFA and CAIX expression in 

xenograft tumors at 1 and 7 days after animals were treated with radiation and PBS 

(Control), CPT, or CRLX101. Scale bar = 50 µm.
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Figure 4. 
Efficacy of CRLX101 CRT treatment on xenograft growth rates in vivo. Growth rates of 

HT-29 (A) and SW480 (B) tumor xenografts treated with radiation and 5-FU and/or 

CRLX101. Growth rates of HT-29 (C) and SW480 (D) tumor xenografts treated with 5-FU 

CRT and CRLX101 or Oxaliplatin (Ox).
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Figure 5. 
Effect of CRLX101 on colorectal cancer cell repopulation. (A) Schematic drawing of in 
vitro cell repopulation assay. (B) Quantification of untreated HT-29-luc2 cell growth over 

time following treatment with radiation (XRT) and PBS (Control), 5-FU, CRLX101, or 5-

FU and CRLX101. (C) Representative bioluminescence images of HT-29-luc2 cell cultures 

13 days following treatment.
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Figure 6. 
Evaluation of GI toxicity following CRLX101 treatment. (A) Representative images and 

quantification of Cleaved Caspase 3 immunofluorescence in distal colon over time following 

treatment with PBS (Control), CPT, or CRLX101 and radiation. Scale bar = 50 µm. **P< 

0.01, ****P <0.0001. (B) Representative images of H&E staining depicting global proximal 

and distal colonic morphology 14 days after treatment with PBS (Control), CPT, or 

CRLX101 and radiation. Scale bar = 80 µm.
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