9 research outputs found

    Single Cell Profiling of Circulating Tumor Cells: Transcriptional Heterogeneity and Diversity from Breast Cancer Cell Lines

    Get PDF
    BACKGROUND: To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. CONCLUSIONS/SIGNIFICANCE: For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs on a cell-by-cell basis is possible and may facilitate the application of 'liquid biopsies' to better model drug discovery

    Concerted potent humoral immune responses to autoantigens are associated with tumor destruction and favorable clinical outcomes without autoimmunity

    No full text
    PURPOSE: The therapeutic importance of immune responses against single versus multiple antigens is poorly understood. There also remains insufficient understanding whether responses to one subset of antigens are more significant than another. Autoantibodies are frequent in cancer patients. They can pose no biological significance or lead to debilitating paraneoplastic syndromes. Autoreactivity has been associated with clinical benefits, but the magnitude necessary for meaningful results is unknown. Autologous tumor cells engineered to secrete granulocyte macrophage colony-stimulating factor generate immune infiltrates in preexisting metastases with associated tumor destruction. We sought to identify targets of responses from this vaccination strategy. EXPERIMENTAL DESIGN: Postvaccination sera used in screening a cDNA expression library prepared from a densely infiltrated metastasis of a long-term surviving melanoma patient identified several autoantigens. Additional autoantigens were identified through similar screenings in non-small cell lung cancer and murine models, and proteins implicated in cancer propagation. ELISAs for several targets were established using recombinant proteins, whereas others were evaluated by petit serologies. RESULTS: Eleven gene products were identified through serologic screening from two patients showing highly favorable clinical outcomes. A subset of antigens revealed significant changes in antibody titers compared with weak responses to other proteins. Time course analyses showed coordinated enhanced titers against several targets as a function of vaccination in responding patients. CONCLUSIONS: This study shows the range of biologically significant antigens resulting from a whole-cell vaccine. Targets include autoantigens that are components of cell cycle regulation. Potent antibody responses against multiple autoantigens are associated with effective tumor destruction without clinical autoimmunity

    Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer

    No full text
    Trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2; also known as HER-2/neu), is indicated for the treatment of women with either early stage or metastatic HER2+ breast cancer. It kills tumor cells by several mechanisms, including antibody-dependent cellular cytotoxicity (ADCC). Strategies that enhance the activity of ADCC effectors, including NK cells, may improve the efficacy of trastuzumab. Here, we have shown that upon encountering trastuzumab-coated, HER2-overexpressing breast cancer cells, human NK cells become activated and express the costimulatory receptor CD137. CD137 activation, which was dependent on NK cell expression of the FcγRIII receptor, occurred both in vitro and in the peripheral blood of women with HER2-expressing breast cancer after trastuzumab treatment. Stimulation of trastuzumab-activated human NK cells with an agonistic mAb specific for CD137 killed breast cancer cells (including an intrinsically trastuzumab-resistant cell line) more efficiently both in vitro and in vivo in xenotransplant models of human breast cancer, including one using a human primary breast tumor. The enhanced cytotoxicity was restricted to antibody-coated tumor cells. This sequential antibody strategy, combining a tumor-targeting antibody with a second antibody that activates the host innate immune system, may improve the therapeutic effects of antibodies against breast cancer and other HER2-expressing tumors

    Combined breast cancer cell line and CTC clusters.

    No full text
    <p>Heatmap of single cell gene expression for 31-gene subset data derived from seven breast cancer cell lines and 105 CTCs isolated from patients with primary and metastatic breast cancer. Yellow indicates high gene expression; gray is median expression; blue indicates low expression; and black represents undetectable expression. The samples reveal two robust clusters for CTCs (lavender: Cluster I; turquoise blue: Cluster II) and two clusters representing primary (pink: CCdl054, orange: CCdl672, gold: CCdl675) and metastatic cell lines. Note dendrogram branches that cluster ER-negative cell lines (red: MDA-231; plum: SKBR3) and ER-positive cell lines (dark green: MCF7, and bright green: T47D).</p

    High dimensional single cell analysis and clustering of CTCs isolated from patients with breast cancer.

    No full text
    <p>Heatmap of single cell gene expression for 31-gene subset data derived from 105 CTCs isolated from patients with primary and metastatic breast cancer. Yellow indicates high gene expression; gray is median expression; blue indicates low expression; and black represents undetectable expression. The samples reveal two robust clusters for CTCs (lavender: Cluster I; turquoise blue: Cluster II). In addition to epithelial markers, these genes include pathways associated with EMT, metastasis, and AKT/mTOR signaling.</p

    High dimensional analysis of single cells from breast cancer cell lines.

    No full text
    <p>A. Heatmap of single cell gene expression of 87 genes within seven individual cells isolated from three primary tumor-derived (pink: CCdl054, orange: CCdl672, gold: CCdl675), and four metastatic effusion-derived (red: MDA-231 plum: SKBR3, dark green: MCF7, and bright green: T47D) breast cancer cell lines. Yellow indicates high gene expression; gray is median expression; blue indicates low expression; and black represents undetectable expression. All cells showed expected expression patterns. The breast cancer cell lines used represent a spectrum of cell differentiation, e.g., from less differentiated and more mesenchymal/stem cell-like ER-negative (basal-like) cells (MDA-231 and SKBR3) to more differentiated ER-positive (luminal-like) cells represented by CCdl054, CCdl672, CCdl675, MCF7, and T47D.</p
    corecore