5,711 research outputs found

    Age-related changes in arterial blood-gas variables in Holstein calves at moderate altitude

    Get PDF
    Includes bibliographical references (pages 19-20).The goal of this study was to determine whether peripheral oxygen delivery and efficacy of alveolar-arterial oxygen (A-a O2) transfer, as estimated from the A-a O2 pressure gradient, are compromised in Holstein calves at moderate altitude. The primary objective was to evaluate age-related changes in arterial blood-gas variables, L-lactate, and hematocrit in healthy calves. The secondary objective was to determine if coughing and nasal discharge, commonly used indicators of respiratory disease, are associated with A-a O2 gradient. Arterial blood-gas tensions were evaluated in a cohort of 61 dairy calves on one farm at moderate altitude (1,601 m to 1,696 m). Sampling was performed on four occasions at approximately 10, 38, 150, and 261 days of age. Hyperventilation, as indicated by hypocapnia, was evident in calves of all ages. Increasing age was associated with a nonlinear increase in arterial oxygen tension (P<0.001) and a nonlinear decrease in A-a O2 gradient (P<0.001). The mean A-a O2 gradient at 10 and 38 days of age was over 18 mmHg, indicating poor efficacy of oxygen transfer. Cough score (P=0.02) but not nasal score (P=0.32) was associated with an in increase in A-a O2 pressure gradient. Mean hematocrit remained low (<27%) despite hypoxemia. From 38 days of age, median L-lactate concentration remained over 1.5 mmol/L, indicating substantial anaerobic respiration due to inadequate oxygen delivery. Twenty-five percent of calves were treated for respiratory disease. The maximum age at first treatment was 102 days. In conclusion, there was a nonlinear improvement in A-a O2 transfer efficacy with increasing age, but peripheral oxygen delivery remained compromised. Hyperventilation and impaired A-a O2 transfer due to functional immaturity of the pulmonary system may be risk factors for respiratory disease in dairy calves at moderate altitude.Published with support from the Colorado State University Libraries Open Access Research and Scholarship Fund

    Development of a low-maintenance measurement approach to continuously estimate methane emissions: a case study

    Get PDF
    The chemical breakdown of organic matter in landfills represents a significant source of methane gas (CH4). Current estimates suggest that landfills are responsible for between 3% and 19% of global anthropogenic emissions. The net CH4 emissions resulting from biogeochemical processes and their modulation by microbes in landfills are poorly constrained by imprecise knowledge of environmental constraints. The uncertainty in absolute CH4 emissions from landfills is therefore considerable. This study investigates a new method to estimate the temporal variability of CH4 emissions using meteorological and CH4 concentration measurements downwind of a landfill site in Suffolk, UK from July to September 2014, taking advantage of the statistics that such a measurement approach offers versus shorter-term, but more complex and instantaneously accurate, flux snapshots. Methane emissions were calculated from CH4 concentrations measured 700 m from the perimeter of the landfill with observed concentrations ranging from background to 46.4 ppm. Using an atmospheric dispersion model, we estimate a mean emission flux of 709 μg m−2 s−1 over this period, with a maximum value of 6.21 mg m−2 s−1, reflecting the wide natural variability in biogeochemical and other environmental controls on net site emission. The emissions calculated suggest that meteorological conditions have an influence on the magnitude of CH4 emissions. We also investigate the factors responsible for the large variability observed in the estimated CH4 emissions, and suggest that the largest component arises from uncertainty in the spatial distribution of CH4 emissions within the landfill area. The results determined using the low-maintenance approach discussed in this paper suggest that a network of cheaper, less precise CH4 sensors could be used to measure a continuous CH4 emission time series from a landfill site, something that is not practical using far-field approaches such as tracer release methods. Even though there are limitations to the approach described here, this easy, low-maintenance, low-cost method could be used by landfill operators to estimate time-averaged CH4 emissions and their impact downwind by simultaneously monitoring plume advection and CH4 concentrations

    Possible Contamination of the Intergalactic Medium Damping Wing in ULAS J1342+0928 by Proximate Damped Lyα\alpha Absorption

    Full text link
    The red damping wing from neutral hydrogen in the intergalactic medium is a smoking-gun signal of ongoing reionization. One potential contaminant of the intergalactic damping wing signal is dense gas associated with foreground galaxies, which can give rise to proximate damped Lyα\alpha absorbers. The Lyα\alpha imprint of such absorbers on background quasars is indistinguishable from the intergalactic medium within the uncertainty of the intrinsic quasar continuum, and their abundance at z≳7z\gtrsim7 is unknown. Here we show that the complex of low-ionization metal absorption systems recently discovered by deep JWST/NIRSpec observations in the foreground of the z=7.54z=7.54 quasar ULAS~J1342++0928 can potentially reproduce the quasar's spectral profile close to rest-frame Lyα\alpha without invoking a substantial contribution from the intergalactic medium, but only if the absorbing gas is extremely metal-poor ([O/H]∼−3.5[{\rm O}/{\rm H}]\sim-3.5). Such a low oxygen abundance has never been observed in a damped Lyα\alpha absorber at any redshift, but this possibility still complicates the interpretation of the spectrum. Our analysis highlights the need for deep spectroscopy of high-redshift quasars with JWST or ELT to "purify" damping wing quasar samples, an exercise which is impossible for much fainter objects like galaxies.Comment: 10 pages, 5 figures, submitted to ApJ

    Have Gender Gaps in Math Closed? Achievement, Teacher Perceptions, and Learning Behaviors Across Two ECLS-K Cohorts

    Get PDF
    Studies using data from the Early Childhood Longitudinal Study–Kindergarten Class of 1998–1999 (ECLS-K:1999) revealed gender gaps in mathematics achievement and teacher perceptions. However, recent evidence suggests that gender gaps have closed on state tests, raising the question of whether such gaps are absent in the ECLS-K:2011 cohort. Extending earlier analyses, this study compares the two ECLS-K cohorts, exploring gaps throughout the achievement distribution and examining whether learning behaviors might differentially explain gaps more at the bottom than the top of the distribution. Overall, this study reveals remarkable consistency across both ECLS-K cohorts, with the gender gap developing early among high achievers and spreading quickly throughout the distribution. Teachers consistently rate girls’ mathematical proficiency lower than that of boys with similar achievement and learning behaviors. Gender differences in learning approaches appear to be fairly consistent across the achievement distribution, but girls’ more studious approaches appear to have more payoff at the bottom of the distribution than at the top. Questions remain regarding why boys outperform girls at the top of the distribution, and several hypotheses are discussed. Overall, the persistent ECLS-K patterns make clear that girls’ early mathematics learning experiences merit further attention

    Thermal conductivity of highly-ordered mesoporous titania thin films from 30 to 320 K

    Get PDF
    This paper reports the cross-plane thermal conductivity of highly-ordered amorphous and crystalline templated mesoporous titania thin films measured by the 3ω method from 30 to 320 K. Both sol-gel and nanocrystal-based films were synthesized by evaporation-induced self-assembly, with average porosity of 30% and 35%, respectively. The pore diameter ranged from 14 to 25 nm. The size of crystalline domains in polycrystalline mesoporous films was 12 to 13 nm while the nanocrystals in the nanocrystal-based film were 9 nm in diameter. At high temperatures, the thermal conductivity of amorphous dense and mesoporous films showed similar trends with respect to temperature. This was attributed to the fact that the presence of pores had a purely geometrical effect by reducing the cross-sectional area through which heat can diffuse. By contrast, the thermal conductivity of polycrystalline dense and mesoporous films behave differently with temperature due to phonon scattering by pores and crystalline nanosize domains. In addition, at low temperatures, the presence of pores caused the thermal conductivity of mesoporous films to be less temperature dependent than their dense counterparts. Despite its crystallinity, the thermal conductivity of the nanocrystal-based film was about 40% less than that of the polycrystalline mesoporous films. This was mainly attributed to its larger porosity, smaller crystal size, and strong phonon scattering at the poorly interconnected nanocrystal boundaries. These results suggest various ways to control the thermal conductivity of mesoporous materials for various applications

    Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway

    Get PDF
    Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ
    • …
    corecore