144 research outputs found

    Note on the location of zeros of polynomials

    Full text link
    In this note, we provide a wide range of upper bounds for the moduli of the zeros of a complex polynomial. The obtained bounds complete a series of previous papers on the location of zeros of polynomials.Comment: 8 page

    Zero and coefficient inequalities for hyperbolic polynomials

    Get PDF
    In this paper using classical inequalities and Cardan-Viète formulae some inequalities involving zeroes and coefficients of hyperbolic polynomials are given. Furthermore, considering real polynomials whose zeros lie in Re(z)>0, the previous results have been extended and new inequalities are obtained.Peer ReviewedPostprint (published version

    Computational effectiveness of LMI design strategies for vibration control of large structures

    Get PDF
    Distributed control systems for vibration control of large structures involve a large number of actuation devices and sensors that work coordinately to produce the desired control actions. Design strategies based on linear matrix inequality (LMI) formulations allow obtaining controllers for these complex control problems, which are characterized by large dimensionality, high computational cost and severe information constraints. In this paper, we conduct a comparative study of the computational effectiveness of three different LMI-based controller design strategies: H-infinity, energy-to-peak and energy-to-componentwise-peak. The H-infinity approach is a well-known design methodology and has been widely used in the literature. The energy-to-peak approach is a particular case of generalized H2 design that is gaining a growing relevance in structural vibration control. Finally, the energy-to-componentwise-peak approach is a less common case of generalized H2 design that produces promising results among the three considered approaches. These controller design strategies are applied to synthesize active state-feedback controllers for the seismic protection of a five-story building and a twenty-story building both equipped with complete systems of interstory actuation devices. To evaluate the computational effectiveness of the proposed LMI design methodologies, the corresponding computation times are compared and a suitable set of numerical simulations is carried out to assess the performance of the obtained controllers. As positive results, two main facts can be highlighted: the computational effectiveness of the energy-to-peak control design strategy and the particularly well-balanced behavior exhibited by the energy-to-componentwise-peak controllers. On the negative side, it has to be mentioned the computational inefficiency of the considered LMI design methodologies to properly deal with very-large-scale control problems.Peer ReviewedPostprint (published version

    Integrated design of hybrid interstory-interbuilding multi-actuation schemes for vibration control of adjacent buildings under seismic excitations

    Get PDF
    The design of vibration control systems for the seismic protection of closely adjacent buildings is a complex and challenging problem. In this paper, we consider distributed multi-actuation schemes that combine interbuilding linking elements and interstory actuation devices. Using an advanced static output-feedback H∞ approach, active and passive vibration control systems are designed for a multi-story two-building structure equipped with a selected set of linked and unlinked actuation schemes. To validate the effectiveness of the obtained controllers, the corresponding frequency responses are investigated and a proper set of numerical simulations is conducted using the full scale North–South El Centro 1940 seismic record as ground acceleration disturbance. The observed results indicate that using combined interstory-interbuilding multi-actuation schemes is an effective means of mitigating the vibrational response of the individual buildings and, simultaneously, reducing the risk of interbuilding pounding. These results also point out that passive control systems with high-performance characteristics can be designed using damping elements.Peer ReviewedPostprint (published version

    An effective strategy of real-time vision-based control for a Stewart platform

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksA Stewart platform is a kind of parallel robot which can be used for a wide variety of technological and industrial applications. In this paper, a Stewart platform designed and assembled at the Universitat Polit`ecnica de Catalunya (UPC) by our research group is presented. The main objective is to overcome the enormous difficulties that arise when a real-time vision-based control of a fast moving object placed on these mechanisms is required. In addition, a description of its geometric characteristics, the calibration process, together with an illustrative experiment to demonstrate the good behavior of the platform is given.Postprint (author's final draft

    Distributed passive actuation schemes for seismic protection of multibuilding systems

    Get PDF
    In this paper, we investigate the design of distributed damping systems (DDSs) for the overall seismic protection of multiple adjacent buildings. The considered DDSs contain interstory dampers implemented inside the buildings and also interbuilding damping links. The design objectives include mitigating the buildings seismic response by reducing the interstory-drift and story-acceleration peak-values and producing small interbuilding approachings to decrease the risk of interbuilding collisions. Designing high-performance DDS configurations requires determining convenient damper positions and computing proper values for the damper parameters. That allocation-tuning optimization problem can pose serious computational difficulties for large-scale multibuilding systems. The design methodology proposed in this work—(i) is based on an effective matrix formulation of the damped multibuilding system; (ii) follows an H8 approach to define an objective function with fast-evaluation characteristics; (iii) exploits the computational advantages of the current state-of-the-art genetic algorithm solvers, including the usage of hybrid discrete-continuous optimization and parallel computing; and (iv) allows setting actuation schemes of particular interest such as full-linked configurations or nonactuated buildings. To illustrate the main features of the presented methodology, we consider a system of five adjacent multistory buildings and design three full-linked DDS configurations with a different number of actuated buildings. The obtained results confirm the flexibility and effectiveness of the proposed design approach and demonstrate the high-performance characteristics of the devised DDS configurations.Peer ReviewedPostprint (published version

    Desigualtats matricials lineals amb valors complexos

    Get PDF
    Sovint ens trobem davant de desigualtats matricials lineals (LMIs) on les matrius involucrades prenen valors complexos. Es ben conegut que tota LMI complexa es pot reduir a una LMI real. En aquest treball establim les propietats que permeten fer el procés de reducció de LMI complexa a LMI real de manera el més simplicada possible.Preprin

    Advanced computational design of shared tuned mass-inerter dampers for vibration control of adjacent multi-story structures

    Get PDF
    Inerters are a novel type of mechanical actuation devices that are able to produce large inertial forces with a relatively small mass. Due to this property, inerters can provide an effective solution to the main drawbacks of tuned mass-dampers and, consequently, they are gaining an increasing relevance in the field of passive structural vibration control. In this paper, a computational design strategy for inerter-based vibration control schemes is presented. The proposed approach combines a computationally effective reduced-frequency H8 cost-function and a constrained global optimization solver to design different configurations of a shared tuned mass-inerter-damper system for the seismic protection of a multi-story two-building structure. To assess the effectiveness of the obtained configurations, the frequency characteristics and the seismic response of the interstory drifts and interbuilding approaches are investigated with positive results.Peer ReviewedPostprint (published version

    Advanced design of integrated vibration control systems for adjacent buildings under seismic excitations

    Get PDF
    In vibration control of adjacent buildings under seismic excitations, a twofold objective has to be considered: (i) to mitigate the vibrational response of the individual structures and (ii) to provide a suitable protection against interbuilding impacts (pounding). An interesting strategy to deal with this complex control problem consists in considering an integrated control system, which combines interbuilding actuation devices with local control systems implemented in the individual buildings. In this paper, an effective computational strategy to design this kind of integrated control systems is presented. The proposed design methodology is based on a linear matrix inequality formulation, allows including active and passive actuation devices, and makes it possible to deal with important information constraints associated to the problem. The main ideas are illustrated by means of a twobuilding systemequipped with three actuation devices: two interstory actuation devices implemented at the ground level of the buildings, plus an interbuilding actuation device installed at the top level of the lowest building. For this control setup, two different integrated controllers are designed. A proper set of numerical simulations is conducted to assess the performance of the proposed controllers with positive results.Peer ReviewedPostprint (published version
    corecore