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Abstract: In this paper, we investigate the design of distributed damping systems (DDSs) for the
overall seismic protection of multiple adjacent buildings. The considered DDSs contain interstory
dampers implemented inside the buildings and also interbuilding damping links. The design objectives
include mitigating the buildings seismic response by reducing the interstory-drift and story-acceleration
peak-values and producing small interbuilding approachings to decrease the risk of interbuilding
collisions. Designing high-performance DDS configurations requires determining convenient damper
positions and computing proper values for the damper parameters. That allocation-tuning optimization
problem can pose serious computational difficulties for large-scale multibuilding systems. The design
methodology proposed in this work—(i) is based on an effective matrix formulation of the damped
multibuilding system; (ii) follows an H∞ approach to define an objective function with fast-evaluation
characteristics; (iii) exploits the computational advantages of the current state-of-the-art genetic algorithm
solvers, including the usage of hybrid discrete-continuous optimization and parallel computing; and (iv)
allows setting actuation schemes of particular interest such as full-linked configurations or nonactuated
buildings. To illustrate the main features of the presented methodology, we consider a system of five
adjacent multistory buildings and design three full-linked DDS configurations with a different number of
actuated buildings. The obtained results confirm the flexibility and effectiveness of the proposed design
approach and demonstrate the high-performance characteristics of the devised DDS configurations.

Keywords: energy-dissipation systems; distributed damping systems; optimal placement; multibuilding
systems; seismic protection; hybrid genetic algorithm; parallel computing; pounding protection

1. Introduction

Over the last few years, an increasing research effort has been invested in the analysis, design and
implementation of distributed damping systems (DDSs) for seismic protection of buildings and civil
structures [1,2]. That kind of passive energy-dissipation systems is formed by a set of damping elements
installed at suitable locations of the structure. DDSs are simple, reliable and robust and, when properly
designed, are able to produce a remarkable reduction of the overall seismic vibrational response [3–5].
Broadly speaking, three main issues related to the damping elements have to be addressed in DDS
design—(i) technical setup determination, (ii) allocation and (iii) tuning. Determination of the technical setup
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is a preliminary step, which is strongly conditioned by the particular problem under consideration and
involves selecting a particular kind of damping devices and, possibly, setting other technical characteristics
such as the type of damper mounting, maximum damping capacity or maximum stroke [6,7] . It can
also include some overall characteristics as the total number of allowed dampers or the overall damping
capacity. The allocation problem requires determining a suitable set of structural positions to implement
the dampers, and the tuning problem consists in computing adequate values for the damper parameters.
For a given technical setup, the allocation and tuning issues are clearly interlinked and both must be
simultaneously solved in order to obtain a DDS design with high-performance characteristics. The
combined allocation-tuning problem can be formulated as a constrained optimization problem, with
a set of decision variables that describes the different allocation schemes and parameter values of the
damping devices, an objective function that allows evaluating the suitability of the corresponding DDSs,
and a system of constraints that incorporate relevant features of the considered technical setup. To solve
allocation-tuning optimization problems (ATOPs), a wide variety of computational strategies have been
proposed, which include specialized optimization methods [8–12] and adaptations of general-purpose
optimization algorithms [13–15]. Specialized optimization methods are specifically designed for particular
kinds of ATOPs and, sometimes, can produce remarkably effective results for the considered problem.
However, it should be highlighted that solving ATOPs for large structural systems can be a hard
computational task, due to a number of factors such as high dimensionality, the combination of discrete and
continuous decision variables, the presence of complex structural constraints, and the computational cost
associated to the evaluation of the objective function. In this context, taking advantage of state-of-the-art
general-purpose optimization solvers can be an element of critical relevance.

The general goal of the paper is to design high-performance DDSs for seismic protection of
multibuilding systems (MBSs) formed by a row of m adjacent buildings as the one schematically displayed
in Figure 1. There certainly exists a large number of works on DDS design for single buildings in the
literature; some recent discussions on the topic can be found in References [5–7,15,16]. For the particular
case of m = 2 adjacent buildings, the number of references is remarkably smaller but yet significant. Works
in this line include different kinds of interbuilding damping devices [17–19] and actuation schemes [20–22].
In contrast, to our best knowledge, the more general case of DDS design for MBSs with m ≥ 3 adjacent
buildings remains practically unexplored.

To keep the complexity of the considered problem within a reasonable level, in this work we assume
that all the buildings have identical dynamic characteristics [20,21]. That choice allows simplifying the
notations in the overall mathematical model and can help to clarify the effects produced by the DDS,
which otherwise could be confounded by the action of the distinct building responses. Moreover, as
rows of adjacent identical buildings is a quite common arrangement in residential areas, the selected
MBS configuration can be considered as a case of potential practical interest [23]. Also for simplicity,
the buildings are modeled as linear planar frames and the damping devices are assumed to be fluid
viscous dampers (FVDs), which have proved to be effective energy-dissipation elements in structural
vibration control and bring the modeling advantage of admitting a reasonably linear representation
[7]. Attending to the structural placement, the DDS can contain two different kinds of dampers—(i)
interstory dampers, which are implemented between consecutive stories of the same building and produce
a resistant force proportional to the corresponding interstory velocity and (ii) interbuilding dampers, which
are implemented as linking elements between stories located at the same level in adjacent buildings and
produce a resistant force proportional to the relative velocity of the linked stories. The DDS can also
include two types of building damping configurations of particular interest—(i) nonactuated buildings,
which do not contain any interstory damper and (ii) linked buildings, which are linked to all their adjacent
buildings by means of interbuilding dampers. For instance, in the MBS presented in Figure 1, buildings
B(2) and B(3) are nonactuated; buildings B(1), B(2) and B(3) are linked; B(4) is only partially linked and
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B(5) is unlinked. It should be observed that the DDS implementation can be carried out without internal
modifications of nonactuated buildings, which can be an important factor in retrofitting. The relevance of
linked configurations lies in the fact that they can help to mitigate the vibrational response of nonactuated
buildings and can also provide an effective protection against interbuilding impacts (pounding) [22,23].
To incorporate those aspects in the DDS design and reducing the number of optimization variables, we
introduce the schemes of allowed damper positions, which specify the interstory and interbuilding locations
where the dampers can be implemented. Finally, we complete the technical setup determination by setting
the maximum damping capacity of the dampers, the overall maximum damping capacity of the DDS and
the total number of allowed damping elements.
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Figure 1. System of m = 5 adjacent buildings equipped with a distributed set of interstory and interbuilding
dampers.

In order to define the ATOP, the generic goal of improving the overall seismic response of the MBS is
formulated as a triplet of particular design objectives: (i) reducing the magnitude of the buildings interstory
drifts, (ii) reducing the magnitude of the buildings floor accelerations and (iii) reducing the interbuilding
approachings. Objectives (i) and (ii) are applicable to single-building designs, and are respectively
associated to the protection of the buildings structural and nonstructural elements [16,24]. Objective (iii) is
specific to MBS designs and is associated to avoiding interbuilding impacts, which can produce severe
damage to both structural and nonstructural elements. In order to obtain a computationally effective
procedure, we select the overall vector of interstory drifts as controlled output and follow a single-objective
H∞ approach [25,26]. That choice sets the reduction of interstory drifts as the primary objective and,
at the same time, is able to produce positive results in mitigating the story accelerations [22]. As for
design objective (iii), reduction of interbuilding approachings can be attained by enforcing a full-linked
configuration in the optimization constraints [27,28]. Computationally, the selected H∞ objective-function
avoids conducting numerical simulations of seismic time-responses and admits a fast evaluation using the
hinfnorm function of the Matlab Robust Control Toolbox [29,30]. The ATOP solutions are obtained with
the genetic algorithm (GA) solver provided by the Matlab Global Optimization Toolbox, which allows
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using hybrid sets of discrete and continuous optimization variables, permits defining a sufficiently wide
variety of optimization constraints and facilitates an easy implementation of parallel computing [31]. To
demonstrate the flexibility of the proposed methodology, three different DDSs are designed for the seismic
protection of a MBS formed by m = 5 adjacent five-story buildings. After that, a proper set of numerical
simulations are conducted using the full-scale 180-component of the El Centro 1940 seismic record as
ground acceleration disturbance. The obtained results corroborate the effectiveness of the proposed design
procedure and confirm its computational efficiency for large-scale problems.

The content of the rest of the paper is as follows—in Section 2, a general mathematical model for
plain and damped MBSs is presented. The main elements of the optimization procedure are discussed
in Section 3. In Section 4, three different DDSs for a five-building system are designed. In Section 5,
the corresponding seismic time-responses are computed and compared. Finally, in Section 6, some brief
conclusions and future research lines are provided.

Remark 1. To reduce the problem complexity and facilitate an effective computational solution, a number of model
simplifications have been introduced in the paper, which should be carefully considered for a proper understanding
of the scope and applicability of the proposed design methodology. Specifically, buildings are considered as linear
multistory planar frames with stories of the same height. In the multibuilding systems, all the buildings are identical,
with the same mass, stiffness and damping matrices, and there are no vertical differences between stories placed at the
same level in different buildings. The damping elements are ideal linear dampers and the damping constants can
take any real value in a prescribed interval. The interbuilding separations are assumed to be large enough to avoid
interbuilding impacts. Additionally, the effect of some relevant elements such as the soil-structure interaction and
the seismic wave propagation have been neglected.

Remark 2. The considered problem requires a complex system of notations. To obtain a more organized and clear
presentation, throughout this paper symbols related to interstory elements will be usually marked with hats and
those corresponding to interbuilding elements will be signaled with tildes. When convenient, overlines will be used
to distinguish some elements related to the overall MBS. Thus, for example, n̂j will denote the number of interstory
dampers in building B(j), the number of interbuilding dampers between buildings B(j) and B(j+1) will be indicated
by ñj, and the overall number of degrees of freedom in the MBS will be represented by n.

2. Mathematical Model

In this section we present mathematical models for the dynamical response of MBSs equipped with a
distributed set of interstory and interbuilding FVDs. The proposed models are fully formulated in matrix
form and include state-space representations to facilitate an efficient computational implementation, which
is a factor of critical relevance in the practical application of the design procedure.

2.1. Plain Building Model

Let us consider a MBS system formed by a row of m adjacent n-story buildings with identical dynamic
characteristics. In the plain configuration, we assume that the buildings damping is only due to the effect
of the structural damping, and the dynamical response of building B(j) can be modeled in the following
form:

Mbq̈(j)(t) + Cbq̇(j)(t) + Kbq(j)(t) = −Mb[1]n×1ẅ(t), (1)

where q(j)(t) = [qj
1(t), . . . , qj

n(t)]T is the vector of story displacements with respect to the ground (see
Figure 2); Mb, Cb and Kb are the building mass, damping and stiffness matrices, respectively, which are
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common to all the buildings; [1]n×1 is a column vector of size n with all its entries equal to one; and ẅ(t) is
the acceleration of the seismic ground disturbance. The building mass matrix has the diagonal form

Mb = diag[m1, . . . , mn] =

 m1
. . .

mn

 , (2)

where mi is the mass of the ith story. The stiffness matrix has the following tridiagonal structure:

Kb =


k1 + k2 −k2

−k2 k2 + k3 −k3

. . . . . . . . .
−kn−1 kn−1 + kn −kn

−kn kn

 , (3)

where ki is the stiffness coefficient of the ith story. The stiffness matrix can be computed in the form

Kb = P diag[k1, . . . , kn] PT , (4)

where diag[k1, . . . , kn] is the diagonal matrix defined by the story stiffness coefficients and P ∈ Rn×n is the
upper band-diagonal matrix

P =


1 −1

1 −1
. . . . . .

1 −1
1

 , (5)

with the following elements: 
[P]i,i = 1, i = 1, . . . , n,

[P]i,i+1 = −1, i = 1, . . . , n− 1,

[P]i,j = 0, otherwise.

(6)

When the story damping coefficients ci, i = 1, . . . , n are known, the structure of the building damping
matrix Cb is similar to the structure of the stiffness matrix in Equation (3) and can be computed in the
following form:

Cb = P diag[c1, . . . , cn] PT . (7)

Frequently, however, the damping coefficients ci cannot be properly determined and an approximate
damping matrix Cb is computed by setting a suitable damping ratio on some of the building vibration
modes [32]. Specifically, for the five-building model used in the numerical examples discussed in Sections 4
and 5, the matrix Cb has been computed as a Rayleigh damping matrix by setting a 2% of relative damping
in the first and fifth modes (see Equation (70)).
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Figure 2. Schematic mechanical model of a five-story building equipped with a distributed system of n̂j = 3

supplemental interstory dampers implemented at the story levels p̂j
1 = 1, p̂j

2 = 3 and p̂j
3 = 4.

2.2. Interstory and Interbuilding Damping Models

The dynamical response of building B(j) can be improved by introducing a system of 0 < n̂j ≤ n

additional interstory dampers Ĉ(j) = [ p̂(j), ĉ(j)], where ĉ(j) = [ĉj
1, . . . , ĉj

n̂j
] is the list of damping coefficients

and p̂(j) = [ p̂j
1, . . . , p̂j

n̂j
] is a list that contains the story levels at which the dampers are implemented. The

dynamical response of building B(j) equipped with the additional interstory damping system Ĉ(j) can be
modeled in the form

Mbq̈(j)(t) +
[
Cb + Ĉ(j)]q̇(j)(t) + Kbq(j)(t) = −Mb[1]n×1ẅ(t), (8)

where the damping matrix Ĉ(j) can be computed as

Ĉ(j) = P̂(j) diag[ĉj
1, . . . , ĉj

n̂j
]
{

P̂(j)}T (9)

by considering the diagonal matrix diag[ĉj
1, . . . , ĉj

n̂j
] and the location matrix P̂(j) ∈ Rn×n̂j formed by the

columns of the matrix P indicated in the placement list p̂(j). Thus, for example, the system of additional
interstory dampers in Figure 2 contains n̂j = 3 dampers located at the story positions p̂(j) = [1, 3, 4]. The
corresponding placement and diagonal matrices are, respectively,

P̂(j) =


1 0 0
0 −1 0
0 1 −1
0 0 1
0 0 0

 , diag[ĉj
1, ĉj

2, ĉj
3] =

 ĉj
1 0 0

0 ĉj
2 0

0 0 ĉj
3

 (10)

and the matrix of additional interstory damping has the following form:
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Ĉ(j) =



ĉj
1 0 0 0 0

0 ĉj
2 −ĉj

2 0 0

0 −ĉj
2 ĉj

2 + ĉj
3 −ĉj

3 0

0 0 −ĉj
3 ĉj

3 0

0 0 0 0 0


. (11)

Improving the dynamical response of nonactuated buildings and reducing the pounding risk between
adjacent buildings can be achieved by introducing proper systems of additional interbuilding dampers
C̃(j) = [ p̃(j), c̃(j)], where c̃(j) = [c̃j

1, . . . , c̃j
ñj
] is the list of damping coefficients, p̃(j) = [ p̃j

1, . . . , p̃j
ñj
] is a list

that contains the story levels between buildings B(j) and B(j+1) at which the interbuilding dampers are
implemented, and ñj is the number of dampers in C̃(j). To compute the dynamical response of the buildings
subjected to the action of interbuilding damping systems we define the interbuilding damping matrix C̃(j)

associated to the damping system C̃(j) as

C̃(j) = P̃(j) diag[c̃j
1, . . . , c̃j

ñj
]
{

P̃(j)}T , (12)

where diag[c̃j
1, . . . , c̃j

ñj
] is the diagonal matrix defined by the list of damping coefficients c̃(j) and the

location matrix P̃(j) ∈ Rn×ñj contains the columns of the identity matrix In indicated in the list of damper
positions p̃(j). Thus, for example, the system of additional interbuilding dampers C̃(2) implemented
between buildings B(2) and B(3) in Figure 1 contains ñ2 = 3 dampers with coefficients c̃(2) =

[
c̃2

1, c̃2
2, c̃2

3
]
,

which are located at the story levels p̃(2) = [1, 3, 5]. The corresponding placement and diagonal matrices
are, respectively,

P̃(2) =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 , diag[c̃2
1, c̃2

2, c̃2
3] =

 c̃2
1 0 0

0 c̃2
2 0

0 0 c̃2
3

 (13)

and the matrix of additional interbuilding damping is

C̃(2) =



c̃2
1 0 0 0 0

0 0 0 0 0

0 0 c̃2
2 0 0

0 0 0 0 0

0 0 0 0 c̃2
3

 . (14)

For an m-building system equipped with the set of interstory and interbuilding damping systems
Ĉ(1), . . . , Ĉ(m), C̃(1), . . . , C̃(m−1), the dynamical response of building B(j) can be described by the model

Mbq̈(j)(t) + f(j)
d (t) + Kbq(j)(t) = −Mb[1]n×1ẅ(t), (15)

where the term f(j)
d (t) denotes the total damping force acting on B(j). Using the damping matrix C̃(j)

defined in Equation (12), the total damping force f(1)d (t) acting on the initial building B(1) can be written
in the following form:
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f(1)d (t) =
[
Cb + Ĉ(1)+ C̃(1)

]
q̇(1)(t)− C̃(1)q̇(2)(t); (16)

for an interior building B(j), j = 2, . . . , m− 1, we have

f(j)
d (t) = −C̃(j−1)q̇(j−1)(t) +

[
Cb + Ĉ(j)+ C̃(j−1) + C̃(j)

]
q̇(j)(t)− C̃(j)q̇(j+1)(t); (17)

and for the final building B(m), we obtain

f(m)
d (t) = −C̃(m−1)q̇(m−1)(t) +

[
Cb + Ĉ(m)+ C̃(m−1)

]
q̇(m)(t). (18)

Remark 3. For notational convenience, we will assume that a nonactuated building B(j) is equipped with an empty
system of interstory dampers Ĉ(j) = [ p̂(j), ĉ(j)], where p̂(j) and ĉ(j) are empty lists and the number of dampers is
n̂j = 0. In that case, we agree that Ĉ(j) = [0]n×n. Analogously, when there are no dampers implemented between
buildings B(j) and B(j+1) we will consider an empty system of interbuilding dampers C̃(j) = [ p̃(j), c̃(j)], where p̃(j)

and c̃(j) are empty lists. Also in that case, we have ñj = 0 and set C̃(j) = [0]n×n.

2.3. Overall Multibuilding Model

By considering the overall vector of displacements

q(t) =


q(1)(t)

...

q(m)(t)

 , (19)

the dynamical response of the overall multibuilding system can be described by the model

M q̈(t) +
(

C + Ĉ + C̃
)

q̇(t) + K q(t) = −M [1]n×1ẅ(t), (20)

where n = m · n is the total number of degrees of freedom; M ∈ Rn×n and K ∈ Rn×n are the overall mass
and stiffness matrices, respectively, which have the following block-diagonal structure:

M = diag
[
Mb, (m). . ., Mb

]
=

 Mb
. . .

Mb

 , K = diag
[
Kb, (m). . ., Kb

]
=

 Kb
. . .

Kb

 ; (21)

C ∈ Rn×n and Ĉ ∈ Rn×n are the overall matrices of structural and interstory damping, respectively, which
also have a block-diagonal structure

C = diag
[
Cb, (m). . ., Cb

]
=

 Cb
. . .

Cb

 , Ĉ = diag
[
Ĉ(1), . . . , Ĉ(m)

]
=

 Ĉ(1)

. . .
Ĉ(m)

 ; (22)

and C̃ ∈ Rn×n is a matrix that models the overall interbuilding damping and has the following
block-tridiagonal structure:
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C̃ =


C̃(1) −C̃(1)

−C̃(1) C̃(1) + C̃(2) −C̃(2)

. . . . . . . . .

−C̃(m−2) C̃(m−2) + C̃(m−1) −C̃(m−1)

−C̃(m−1) C̃(m−1)

 . (23)

The matrix C̃ can be computed as

C̃ = Q diag
[
C̃(1), . . . , C̃(m−1)

]
QT , (24)

where Q ∈ Rn×(m−1)n is the block-matrix

Q =


In

−In In

. . . . . .
−In In

−In

 , (25)

defined by blocks [Q]i,j, i = 1, . . . , m, j = 1, . . . , m− 1 with the following form:
[Q]i,i = In, i = 1, . . . , m− 1,

[Q]i+1,i = −In, i = 1, . . . , m− 1,

[Q]i,j = [0]n×n, otherwise,

(26)

where [0]n×n denotes the null matrix of dimension n× n. For example, the five-building system in Figure 1
includes three non-empty interbuilding damping systems C̃(1), C̃(2) and C̃(3) with ñ1 = 2, ñ2 = 3, and
ñ3 = 5 dampers, respectively. It also includes one empty damping system C̃(4), which, according to
Remark 3, has the damping matrix C̃(4) = [0]5×5 . In this case, we obtain the position and coefficient
block-matrices

Q =


I5 [0]5×5 [0]5×5 [0]5×5

−I5 I5 [0]5×5 [0]5×5

[0]5×5 −I5 I5 [0]5×5

[0]5×5 [0]5×5 −I5 I5

[0]5×5 [0]5×5 [0]5×5 −I5

 , diag
[
C̃(1), C̃(2), C̃(3), [0]5×5

]
(27)

and the overall interbuilding damping matrix has the following block structure:

C̃ =



C̃(1) −C̃(1) [0]5×5 [0]5×5 [0]5×5

−C̃(1) C̃(1) + C̃(2) −C̃(2) [0]5×5 [0]5×5

[0]5×5 −C̃(2) C̃(2) + C̃(3) −C̃(3) [0]5×5

[0]5×5 [0]5×5 −C̃(3) C̃(3) [0]5×5

[0]5×5 [0]5×5 [0]5×5 [0]5×5 [0]5×5


. (28)

2.4. State-Space Model and Output Variables

By considering the state vector
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x(t) =

[
q(t)
q̇(t)

]
, (29)

the overall dynamical response of the multibuilding system can be described by a first-order state-space
model

ẋ(t) =
(
Ab + Ad

)
x(t) + B ẅ(t), (30)

where the matrices

Ab =

[
[0]n×n In

−M−1K −M−1C

]
, B =

[
[0]n×1

−[1]n×1

]
(31)

are constant matrices that model the dynamical response of the nonactuated MBS and

Ad =

[
[0]n×n [0]n×n

[0]n×n −M−1(Ĉ + C̃
) ] (32)

is a matrix that reflects the action of the overall system of added dampers.
The vector of interstory drifts r̂(j)(t) = [r̂j

1(t), . . . , r̂j
n(t)]T corresponding to building B(j) has the

following components: r̂j
1(t) = qj

1(t),

r̂j
i(t) = qj

i(t)− qj
i−1(t), i = 2, . . . , n.

(33)

Using the matrix P in Equation (5), the vector r̂(j)(t) can be computed as

r̂(j)(t) = PTq(j)(t), (34)

and the overall vector of interstory drifts corresponding to the multibuilding system

r̂(t) =

 r̂(1)(t)
...

r̂(m)(t)

 (35)

can be obtained in the form r̂(t) = Cr̂ x(t) with the output-matrix

Cr̂ =
[
diag[P, (m). . ., P]T [0]n×n

]
. (36)

The vector of total accelerations of the jth building

a(j)(t) = [aj
1(t), . . . , aj

n(t)]T = q̈(j)(t) + [1]n×1ẅ(t) (37)

contains the story accelerations with respect to an inertial reference frame. Using the state vector x(t), the
overall vector of total accelerations

a(t) =


a(1)(t)

...

a(m)(t)

 (38)
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can be computed in the form

a(t) = −
[

M−1K M−1(C + Ĉ + C̃
) ]

x(t). (39)

The vector of interbuilding approachings between buildings B(j) and B(j+1)

r̃(j)(t) = [r̃j
1(t), . . . , r̃j

n(t)]T = −
{

q(j+1)(t)− q(j)(t)
}

(40)

describes the variation of the interbuilding separation at the different story levels. As schematically
illustrated in Figure 3, for a given interbuilding gap ∆j, the value ∆j − r̃j

i(t) indicates the separation

between stories sj
i and sj+1

i . Hence, positive values of the interbuilding approaching r̃j
i(t) will produce a

reduction of the interbuilding separation, and a value r̃j
i(t) > ∆j will indicate an interbuilding impact at

the ith story level. To avoid the computational complexity associated to building impacts, we will assume
that the interbuilding gaps ∆j, j = 1, . . . , m − 1 are large enough to avoid pounding. In that case, the
approaching peak-value

r̃(j)
max = max

1≤i≤n

(
max
t≥0

r̃j
i(t)
)

(41)

obtained in numerical simulations of the seismic response can be taken as a lower bound of safe
interbuilding separation between buildings B(j) and B(j+1) for the considered seismic excitation. Using
the matrix Q in Equation (25), the overall vector of interbuilding approachings

r̃(t) =


r̃(1)(t)

...

r̃(m−1)(t)

 (42)

can be computed from the state vector in the form

r̃(t) =
[
QT [0](m−1)n×n

]
x(t). (43)
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Figure 3. Interbuilding separation of the stories sj
i and sj+1

i corresponding to the interbuilding approaching

r̃j
i(t) = −{q

j+1
i (t)− qj

i(t)} = 2δ for adjacent buildings B(j) and B(j+1) with an interbuilding gap ∆j.

3. Optimization Procedure

Due to the complexity of the considered problem, the structure of the optimization variables and
constraints is a critical issue for computational efficiency. The selected genetic algorithm (GA) optimization
solver permits simultaneously work with discrete and continuous variables. In the proposed optimization
procedure, discrete binary variables are used to indicate the damper allocations while damping capacities
are described by continuous variables. Also, two different kinds of constraints are employed: (i) preliminary
constraints, which include the scheme of allowed damper positions σ and the total number of damping
elements nd and (ii) solving constraints, which are regular optimization constraints imposed on the
optimization variables. The preliminary constraints are established prior to the solving phase and
determine the number and type of decision variables. The solving constraints are associated to the
optimization solver and are used in the solving phase to enforce the binary character of allocation variables
and controlling the feasibility of solutions with respect to the selected technical setup. In this section, we
provide a detailed description of the schemes of allowed damper positions and the construction of the
multibuilding model corresponding to a particular vector of optimization variables. Next, we discuss the
main features of the objective function and the solving constraints.

3.1. Allowed Damper Positions, Dampers Allocation and Damping Coefficients

In order to determine the structure of the interstory damping systems, we introduce the scheme
of allowed damper positions σ̂ = [σ̂(1), . . . , σ̂(m)], where σ̂(j) = [σ̂

j
1, . . . , σ̂

j
η̂j
] is a list that indicates the

story levels in building B(j) at which additional interstory dampers can be implemented and η̂j is the
number of such allowed positions. When no additional interstory dampers are allowed in building
B(j), we agree that σ̂(j) is an empty list with η̂j = 0 elements. Analogously, to specify the structure of
the interbuilding damping system, we introduce the scheme of allowed positions σ̃ = [σ̃(1), . . . , σ̃(m−1)],
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where σ̃(j) = [σ̃
j
1, . . . , σ̃

j
η̃j
] is a list that indicates the story levels between buildings B(j) and B(j+1) at which

additional interbuilding dampers can be implemented and η̃j is the number of those allowed positions.
Also in this case, the value η̃j = 0 indicates that σ̃(j) is an empty list and that no interbuilding dampers can
be implemented between B(j) and B(j+1). The overall scheme of allowed damper positions

σ = [σ̂(1), . . . , σ̂(m), σ̃(1), . . . , σ̃(m−1)] (44)

has η = η̂ + η̃ elements with η̂ = ∑m
j=1 η̂j and η̃ = ∑m−1

j=1 η̃j. To illustrate the introduced definitions, let us
consider the scheme of allowed damper positions for the three-building system displayed in Figure 4,
which permits implementing interstory dampers at the story levels 1–3 in buildings B(1) and B(3) (blue
dashed squares) and interbuilding dampers at the interbuilding levels 4 and 5 (red dotted squares). In this
case, we have

σ̂(1) = [1, 2, 3] σ̂(2) = [ ] σ̂(3) = [1, 2, 3] σ̃(1) = [4, 5] σ̃(2) = [4, 5]
η̂1 = 3 η̂2 = 0 η̂3 = 3 η̃1 = 2 η̃2 = 2

(45)

with a total number of allowed damper positions η = 10.
To define the damper placement positions of an admissible interstory damping system for building

B(j), we introduce the allocation list α̂(j) = [α̂
j
1, . . . , α̂

j
η̂j
], where α̂

j
i is a binary variable that takes the values

α̂
j
i =

{
1 if an interstory damper is implemented at position σ̂

j
i in B(j),

0 otherwise.
(46)

The number of interstory dampers implemented in B(j) is n̂j = ∑
η̂j
i=1 α̂

j
i and n̂ = ∑m

j=1 n̂j is the
total number of interstory dampers. Analogously, the damper placement positions for an admissible
interbuilding damping system between buildings B(j) and B(j+1) are defined by the allocation list of
binary variables α̃(j) = [α̃

j
1, . . . , α̃

j
η̃j
], where α̃

j
i = 1 indicates that an interbuilding damper is implemented

at level σ̃
j
i . The number of dampers implemented between B(j) and B(j+1) is ñj = ∑

η̃j
i=1 α̃

j
i and ñ = ∑m−1

j=1 ñj
is the total number of interbuilding dampers. For an admissible damping system with nd dampers, the
actual damper placement positions can be described by an overall allocation list

α = [α̂(1), . . . , α̂(m), α̃(1), . . . , α̃(m−1)] (47)

with the constraint n̂ + ñ = nd. For the scheme of allowed damper positions in Equation (45), the damping
system displayed in Figure 4 has the following lists of allocated dampers:

α̂(1) = [1, 1, 0] α̂(2) = [ ] α̂(3) = [1, 0, 1] α̃(1) = [0, 1] α̃(2) = [1, 1]
n̂1 = 2 n̂2 = 0 n̂3 = 2 ñ1 = 1 ñ2 = 2.

(48)

The total number of allocated interstory and interbuilding dampers are n̂ = 4 and ñ = 3, respectively.
The overall list of allocated dampers

α = [

α̂(1)︷ ︸︸ ︷
1, 1, 0,

α̂(3)︷ ︸︸ ︷
1, 0, 1,

α̃(1)︷︸︸︷
0, 1 ,

α̃(2)︷︸︸︷
1, 1 ] (49)

contains η = 10 elements and indicates that the overall number of allocated dampers is nd = 7.
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Figure 4. Schemes of allowed damper positions for a three-building system. Interstory scheme σ̂ =

[σ̂(1), σ̂(2), σ̂(3)] with η̂1 = 3, η̂2 = 0 and η̂3 = 3 (blue dashed rectangles). Interbuilding scheme σ̃ =

[σ̃(1), σ̃(2)] with η̃1 = 2 and η̃2 = 2 (red dotted rectangles).

3.2. Optimization Variables and Associated Multibuilding Model

The optimization variables are organized in a list v = [α, d], where α = [α1, . . . , αη ] is the list of
dampers allocation and d = [d1, . . . , dnd ] is the list of damping coefficients. To carry out the optimization
process, for a given list of optimization variables v = [α, d], we have to compute the damping schemes
Ĉ(1), . . . , Ĉ(m), C̃(1), . . . , C̃(m−1) and the associated damping matrices Ĉ(1), . . . , Ĉ(m), C̃(1), . . . , C̃(m−1). To
simplify that task, we will denote by π(L) the list of positions of the nonzero elements in the list L =

[l1, . . . , lp]. We will also use the shorthands sum(L) = ∑
p
i=1 li ; L(i1 : i2) = [li1 , . . . , li2 ] for i1 ≤ i2 ; and

L(π) = [lπ1 , . . . , lπk ] for a list of positions π = [π1, . . . , πk].
To obtain the matrices of interstory damping Ĉ(j), j = 1, . . . , m, we consider the lists of allowed

interstory damper positions σ̂(j) = [σ̂
j
1, . . . , σ̂

j
η̂j
], j = 1, . . . , m. For j values with η̂j = 0, there can not be any

interstory damper implemented in building B(j) and we directly set n̂j = 0 and Ĉ(j) = [0]n×n. Next, we
define the cumulative numbers θ̂0 = 0, θ̂j = η̂1 + · · ·+ η̂j, j ≥ 1 and, for j values with η̂j > 0, we extract
the list

α̂(j) = [α̂
j
1, . . . , α̂

j
η̂j
] = α(θ̂j−1 + 1 : θ̂j) (50)

and compute the number of interstory dampers n̂j = sum(α̂(j)) allocated in B(j). For j values with n̂j = 0,
there are no dampers allocated in B(j) and we set Ĉ(j) = [0]n×n; for j values with n̂j > 0, we compute the
list of indexes π̂(j) = π(α̂(j)) that contains the positions of the n̂j nonzero elements in α̂(j) and obtain the list
of interstory positions p̂(j) = σ̂(j)(π̂(j)) where the n̂j dampers are allocated. To compute the corresponding
list of damping coefficients, we define the cumulative numbers N̂0 = 0, N̂j = n̂1 + · · ·+ n̂j, for j ≥ 1, and
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extract the coefficient sublist ĉ(j) = d(N̂j−1 + 1 : N̂j). After obtaining the actuation scheme Ĉ(j) = [ p̂(j), ĉ(j)],
the associated damping matrix Ĉ(j) can be computed as indicated in Equation (9).

Analogously, to obtain the interbuilding damping matrices C̃(j), j = 1, . . . , m− 1, we consider the
lists of allowed interbuilding damper positions σ̃(j) = [σ̃

j
1, . . . , σ̃

j
η̃j
], j = 1, . . . , m− 1. For j values with

η̃j = 0, there can not be any interbuilding damper implemented between buildings B(j) and B(j+1), and
we set ñj = 0 and C̃(j) = [0]n×n. For j values with η̃j > 0, we consider the cumulative numbers θ̃0 = 0,
θ̃j = η̃1 + · · ·+ η̃j, j ≥ 1, extract the sublist

α̃(j) = [α̃
(j)
1 , . . . , α̃

(j)
η̃j
] = α(η̂ + θ̃j−1 + 1 : η̂ + θ̃j) (51)

and compute the number of interbuilding dampers ñj = sum(α̃(j)) allocated between B(j) and B(j+1). For
j values with ñj = 0, there are no dampers allocated between B(j) and B(j+1), and we set C̃(j) = [0]n×n; for
j values with ñj > 0, we compute the list of indexes π̃(j) = π(α̃(j)), which contains the positions of the ñj

nonzero elements in α̃(j), and obtain the list of interbuilding positions p̃(j) = σ̃(j)(π̃(j)) where the dampers
are allocated. To compute the corresponding list of damping coefficients, we define the cumulative
numbers Ñ0 = 0, Ñj = ñ1 + · · ·+ ñj, for j ≥ 1, and extract the sublist c̃(j) = d(n̂ + Ñj−1 + 1 : n̂ + Ñj).
From the interbuilding damping scheme C̃(j) = [ p̃(j), c̃(j)], the associated damping matrix C̃(j) can be
computed as indicated in Equation (12).

To illustrate the described procedure, let us consider the scheme of allowed damper positions in
Equation (45), the overall list of allocated dampers in Equation (49) and the list of damping coefficients
d = [d1, . . . , d7]. First, we observe that η̂2 = 0 and set n̂2 = 0 and Ĉ(2) = [0]5×5. Next, we compute the
cumulative numbers

θ̂0 = 0, θ̂1 = 3, θ̂2 = 3, θ̂3 = 6. (52)

For j = 1, we have η̂1 = 3 and extract the sublist

α̂(1) = α(θ̂0 + 1 : θ̂1) = α(1 : 3) = [1, 1, 0], (53)

which indicates that there are n̂1 = sum(α̂(1)) = sum([1, 1, 0]) = 2 interstory dampers allocated in building
B(1). The list of positions of the nonzero elements in α̂(1) is π̂(1) = π([1, 1, 0]) = [1, 2] and the list of
interstory positions where the dampers are allocated is p̂(1) = σ̂(1)(π̂(1)) = σ̂(1)([1, 2]) = [1, 2]. To obtain
the list of damping coefficients, we compute the cumulative numbers N̂0 = 0, N̂1 = 2, and extract the
coefficient sublist ĉ(1) = d(N̂0 + 1 : N̂1) = d(1 : 2) = [d1, d2]. After computing the interstory actuation
scheme Ĉ(1) = [ p̂(1), ĉ(1)], we apply Equation (9) and obtain

Ĉ(1) =



d1 + d2 −d2 0 0 0

−d2 d2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 . (54)

For j = 3, we have η̂3 = 3 and obtain the sublist α̂(3) = α(θ̂2 + 1 : θ̂3) = α(4 : 6) = [1, 0, 1]
and the number of dampers n̂3 = sum(α̂(3)) = 2. The nonzero elements in α̂(3) are placed at positions
π̂(3) = π([1, 0, 1]) = [1, 3], which produces the list of interstory damper positions p̂(3) = σ̂(3)(π̂(3)) =

σ̂(3)([1, 3]) = [1, 3]. With the values n̂2 = 0 and n̂3 = 2, we can complete the cumulative numbers N̂2 = 2,
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N̂3 = 4, and extract the coefficient sublist ĉ(3) = d(N̂2 + 1 : N̂3) = d(3 : 4) = [d3, d4]. According to
Equation (9), the corresponding damping matrix is

Ĉ(3) =



d3 0 0 0 0

0 d4 −d4 0 0

0 −d4 d4 0 0

0 0 0 0 0

0 0 0 0 0

 . (55)

To obtain the interbuilding actuation schemes C̃(1) and C̃(2), we consider the total number of allowed
interstory positions η̂ = 6, the numbers of allowed interbuilding dampers η̃1 = 2 and η̃2 = 2, and the
cumulative values θ̃0 = 0, θ̃1 = 2 and θ̃2 = 4. For C̃(1), we extract the sublist

α̃(1) = α(η̂ + θ̃0 + 1 : η̂ + θ̃1) = α(7 : 8) = [0, 1] (56)

and compute the number of interbuilding dampers ñ1 = sum(α̃(1)) = 1 allocated between B(1) and
B(2). The corresponding list of indexes π̃(1) = π(α̃(1)) = [2] produces the list of interbuilding positions
p̃(1) = σ̃(1)(π̃(1)) = [5] where the dampers are allocated. To obtain the list of damping coefficients, we
consider the total number of allocated interstory dampers n̂ = 4 and the cumulative values Ñ0 = 0, Ñ1 = 1,
and extract the sublist c̃(1) = d(n̂ + Ñ0 + 1 : n̂ + Ñ1) = d(5 : 5) = [d5]. Next, by applying Equation (12),
we obtain the corresponding interbuilding damping matrix

C̃(1) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 d5

 . (57)

Finally, for the interbuilding damping system C̃(2), we obtain the sublist of allocated dampers

α̃(2) = α(η̂ + θ̃1 + 1 : η̂ + θ̃2) = α(9 : 10) = [1, 1], (58)

the number of dampers ñ2 = sum(α̃(2)) = 2, the list of indexes π̃(2) = π(α̃(2)) = [1, 2] and the cumulative
value Ñ2 = 3, which produces the list of positions p̃(2) = σ̃(2)(π̃(2)) = [4, 5] and the list of damping
coefficients c̃(2) = d(n̂ + Ñ1 + 1 : n̂ + Ñ2) = d(6 : 7) = [d6, d7]. In this case, by applying Equation (12), we
get the interbuilding damping matrix

C̃(2) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 d6 0
0 0 0 0 d7

 . (59)

From matrices Ĉ(j), j = 1, . . . , m and C̃(j), j = 1, . . . , m − 1, we can obtain the overall damping
matrices Ĉ and C̃ given in Equations (22) and (23), respectively, and the overall state-space model for the
damped MBS can be computed as indicated in Equation (30).

3.3. Objective Function and Optimization Constraints

For a linear system S with the state-space model
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S :

{
ẋ(t) = Ax(t) + Bw(t),
z(t) = Czx(t),

(60)

the H∞ system-norm

γ(S) = γ(A, B, Cz) = sup
‖w‖2 6=0

‖z‖2

‖w‖2
(61)

indicates the maximum energy-gain from the external disturbance w(t) to the controlled output z(t) [26,33].
Broadly speaking, the H∞ approach aims at minimizing the effect of the worst-case scenario by designing
a system S with a minimum γ-value. In our case, we consider the seismic ground acceleration ẅ(t)
as external disturbance and take the overall vector of interstory drifts r̂(t) given in Equation (35) as
controlled output, which can be computed from the state vector using the controlled-output matrix Cr̂
in Equation (36). As described in the previous section, a particular configuration of the DDS is specified
by a list of optimization variables v = [α, d], where α = [α1, . . . , αη ] is the list of dampers allocation and
d = [d1, . . . , dnd ] is the list of damping coefficients. According to Equation (30), the corresponding damped
system S(v) admits the state-space representation

S(v) :

{
ẋ(t) = {Ab + Ad(v)}x(t) + Bẅ(t),
r̂(t) = Cr̂x(t),

(62)

where Ab, B and Cr̂ are constant matrices and Ad(v) has the form indicated in Equation (32). The associated
H∞-cost of that DDS configuration is

γ(v) = γ(Ab + Ad(v), B, Cr̂). (63)

The GA solver included in the Matlab Global Optimization Toolbox allows working simultaneously
with discrete and continuous optimization variables. Taking advantage of that feature, the allocation
variables α1, . . . , αη are declared as discrete variables and the constraints

0 ≤ αi ≤ 1, i = 1, . . . , η (64)

are used to define them as binary variables. To specify the total number of dampers, we have to set the
condition ∑

η
i=1 αi = nd. As the selected optimization solver does not admit equality constraints on the

discrete variables, we use the following pair of linear constraints to impose that condition

nd − ε ≤
η

∑
i=1

αi,
η

∑
i=1

αi ≤ nd + ε, (65)

where ε is a small positive number. We also consider the sublists of interbuilding dampers allocation
α̃(j) = [α̃

(j)
1 , . . . , α̃

(j)
η̃j
], j = 1, . . . , m− 1, defined in Equation (51) and enforce a full-linked configuration by

setting the linear constraints

η̃j

∑
i=1

α̃
(j)
i ≥ 1, j = 1, . . . , m− 1. (66)

As to the continuous optimization variables d1, . . . , dnd , in this work we assume that all the dampers
are FVDs with a maximum damping capacity cmax and the DDS has a maximum overall damping ctot.
Accordingly, we set the bound constraints
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0 ≤ di ≤ cmax, i = 1, . . . , nd (67)

and the linear constraint

nd

∑
i=1

di ≤ ctot. (68)

In summary, the DDS optimal configuration can be obtained by solving the constrained optimization
problem:

PΓ :

{
minimize γ(v) = γ(Ab + Ad(v), B, Cr̂),

subject to v ∈ Γ,
(69)

where Γ denotes the set of all admissible v-lists that satisfy the system of constraints specified in
Equations (64)–(68).

Remark 4. Using the ss() function of the Matlab Control System Toolbox [34], a state-space representation of the
linear time-invariant model in Equation (60) can be created with sys=ss(A,B,Cz,0). After that, the corresponding
H∞ system-norm in Equation (61) can be readily computed with the function hinfnorm of the Matlab Robust
Control Toolbox [30] in the form gamma=hinfnorm(sys).

Remark 5. It should be observed that the GA solver stops after a certain number of generations, producing only a
suboptimal solution to the optimization problem PΓ . Moreover, due to its stochastic character, distinct solutions are
typically obtained in different runs of the solver. From a practical point of view, however, suboptimal solutions with
small γ-values are frequently able to define DDSs with high-performance characteristics and, in that sense, can be
taken as acceptable solutions to the considered design problem.

4. DDS Designs

To illustrate the effectiveness and flexibility of the proposed design methodology, in this section
we design three different DDSs for the seismic protection of a MBS formed by a row of m = 5 identical
five-story buildings with story masses (×105 kg) m1 = 2.152, m2 = 2.092, m3 = 2.070, m4 = 2.048,
m5 = 2.661 and story stiffness coefficients (×108 N/m) k1 = 1.47, k2 = 1.13, k3 = 0.99, k4 = 0.89 and
k5 = 0.84 [35]. The building damping matrix (in Ns/m)

Cb = 105 ×


2.602 −0.924 0 0 0
−0.924 2.196 −0.810 0 0

0 −0.810 1.995 −0.728 0
0 0 −0.728 1.867 −0.687
0 0 0 −0.687 1.274

 (70)

has been computed as a Rayleigh damping matrix with 2% of relative damping in the first and fifth
modes [32]. The DDSs damping devices are assumed to be linear FVDs with maximum damping capacity
cmax = 3.0× 107 Ns/m. The maximum DDS damping capacity has been set to ctot = 1.5× 108 Ns/m and
the total number of damping devices has been restricted to nd = 12. Also, a full-linked configuration has
been enforced on all the considered DDSs by forbidding empty interbuilding damping systems.

For the first damping configuration (DC1), we select the schemes of allowed interstory damper
positions
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σ̂(1) = [1, 2, 3, 4, 5], σ̂(2) = [ ], σ̂(3) = [1, 2, 3, 4, 5], σ̂(4) = [ ], σ̂(5) = [1, 2, 3, 4, 5] (71)

and allowed interbuilding damper positions

σ̃(1) = [1, 2, 3, 4, 5], σ̃(2) = [1, 2, 3, 4, 5], σ̃(3) = [1, 2, 3, 4, 5], σ̃(4) = [1, 2, 3, 4, 5], (72)

which are schematically represented in Figure 5 by blue dashed and red dotted rectangles, respectively.
That configuration keeps B(2) and B(4) as nonactuated buildings and allows implementing interstory
dampers at all the interstory levels of buildings B(1), B(3) and B(5), and interbuilding dampers at all
interbuilding positions. In the optimization variable v = [α, d], the list of dampers allocations α contains
η = 35 binary variables, and the list of damping coefficients d includes nd = 12 continuous variables. For
DC1, the solution provided by the GA solver to the optimization problem in Equation (69) includes the
optimal allocation list

α = [

α̂(1)︷ ︸︸ ︷
1, 1, 1, 0, 0,

α̂(3)︷ ︸︸ ︷
1, 1, 1, 0, 0,

α̂(5)︷ ︸︸ ︷
0, 1, 1, 0, 0,

α̃(1)︷ ︸︸ ︷
0, 0, 0, 1, 0,

α̃(2)︷ ︸︸ ︷
0, 0, 1, 0, 0,

α̃(3)︷ ︸︸ ︷
0, 0, 1, 0, 0,

α̃(4)︷ ︸︸ ︷
0, 0, 1, 0, 0 ], (73)

which corresponds to the system of interstory and interbuilding dampers displayed as blue and red small
dashpots in Figure 5, respectively, and the damping coefficients collected in the first row of Table 1.
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d4
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d10 d12

B(1) B(2) B(3) B(4) B(5)

d3

d2

d1

d11

Figure 5. Damping configuration DC1. Full-linked distributed damping system (DDS) with three actuated
buildings, n̂ = 8 interstory dampers and ñ = 4 interbuilding dampers.

Table 1. Values of the damping coefficients corresponding to the linked damping configurations DC1, DC2
and DC3 (×107 Ns/m).

Conf. d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

DC1 1.4480 1.5137 1.3414 2.0098 2.1014 1.9725 1.5460 1.3074 0.4334 0.3683 0.8023 0.1528
DC2 1.8626 1.9882 1.7986 1.6611 2.1895 1.9489 1.6484 0.6311 0.4362 0.1519 0.0006 0.6828
DC3 2.6792 2.7151 2.5843 2.1407 0.2790 0.9873 0.7835 0.0009 1.3963 0.9310 0.0007 0.5018
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The second damping configuration (DC2), schematically displayed in Figure 6, allows placing
dampers in the interstory positions

σ̂(1) = [ ], σ̂(2) = [1, 2, 3, 4, 5], σ̂(3) = [ ], σ̂(4) = [1, 2, 3, 4, 5], σ̂(5) = [ ] (74)

and the interbuilding positions

σ̃(1) = [3, 4, 5], σ̃(2) = [3, 4, 5], σ̃(3) = [3, 4, 5], σ̃(4) = [3, 4, 5], (75)

which constrains the placement of interstory dampers to buildings B(2) and B(4) and restricts the
placements of interbuilding dampers to the upper three interbuilding levels. In this second case, the
total number of optimization variables is reduced to 34, with η = 22 binary allocation variables and
nd = 12 continuous damping-coefficient variables. The optimal solution attained by the GA solver for
DC2 includes the allocation list

α = [

α̂(2)︷ ︸︸ ︷
1, 1, 1, 1, 0,

α̂(4)︷ ︸︸ ︷
0, 1, 1, 1, 0,

α̃(1)︷ ︸︸ ︷
0, 0, 1,

α̃(2)︷ ︸︸ ︷
0, 0, 1,

α̃(3)︷ ︸︸ ︷
0, 0, 1,

α̃(4)︷ ︸︸ ︷
1, 1, 0 ], (76)

and the damping coefficients presented in the second row of Table 1.
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d3

d2

d1

d6

d5

Figure 6. Damping configuration DC2. Full-linked DDS with two actuated buildings, n̂ = 7 interstory
dampers and ñ = 5 interbuilding dampers.

Finally, we consider the third damping configuration (DC3) displayed in Figure 7, which allows
placing interbuilding dampers at all interbuilding positions and restricts interstory damper implementation
to building B(1). For that case, the schemes of allowed interstory and interbuilding damping positions are

σ̂(1) = [1, 2, 3, 4, 5], σ̂(2) = [ ], σ̂(3) = [ ], σ̂(4) = [ ], σ̂(5) = [ ] (77)

and
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σ̃(1) = [1, 2, 3, 4, 5], σ̃(2) = [1, 2, 3, 4, 5], σ̃(3) = [1, 2, 3, 4, 5], σ̃(4) = [1, 2, 3, 4, 5], (78)

respectively, and the total number of optimization variables is 37 with η = 25 binary damper-allocation
variables and nd = 12 continuous damping-coefficient variables. The optimal allocation list obtained for
DC3 is

α = [

α̂(1)︷ ︸︸ ︷
1, 1, 1, 1, 0,

α̃(1)︷ ︸︸ ︷
0, 0, 1, 1, 1,

α̃(2)︷ ︸︸ ︷
0, 0, 1, 0, 1,

α̃(3)︷ ︸︸ ︷
0, 0, 0, 0, 1,

α̃(4)︷ ︸︸ ︷
0, 1, 0, 0, 1 ], (79)

and the corresponding damping coefficients are collected in the third row of Table 1.
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d1

d5

d6

d8

Figure 7. Damping configuration DC3. Full-linked DDS with a single actuated building, n̂ = 4 interstory
dampers and ñ = 8 interbuilding dampers.

Looking at the damping coefficient values in Table 1 and the structure of the optimal damper
placements in Figures 5–7, the following facts can be observed: (i) damping coefficients of interbuilding
dampers are about one order of magnitude lower than those obtained for interstory dampers, (ii) interstory
dampers tend to be placed in low building levels, and (iii) interbuilding dampers are preferably allocated
at upper interbuilding positions. These facts are consistent with the results obtained in preliminary works
on DDSs for MBSs [22,23]. It can also be observed in Table 1 that there are some dampers with particularly
small damping coefficients. Specifically, damping coefficients d11 in DC2 and d8 and d11 in DC3 are
remarkably small when compared with the coefficient values of all the other interstory and interbuilding
dampers. It should be noted that those small coefficients correspond to dampers placed at particularly low
interbuilding positions and can be interpreted as a numerical side-effect of constraining the overall number
of dampers to exactly nd = 12 elements. From a practical point of view, those residual dampers can be
removed without any significant loss of performance and, consequently, the DDSs corresponding to the
optimal configurations DC2 and DC3 could be implemented with a set of 11 and 10 dampers, respectively.
Regarding the optimal γ-values, the data in Table 2 indicate that the considered damping configurations are
all able to produce a significant reduction of the system H∞-norm when compared with the nonactuated
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MBS. In particular, an H∞-norm decrease around 82% is attained by DC3 and larger reductions of about
88% are achieved by DC1 and DC2. The better results obtained by DC1 and DC2 suggest a superior
performance of widely distributed interstory damping schemes. However, it is worth highlighting the
potential implementation advantages of DC3, which would only require internal modifications of building
B(1). As to the computational aspects, the selected GA solver has shown to be very effective in dealing
with the mixture of discrete and continuous variables, the variety of optimization constraints and the
relatively large number of optimization variables. All the presented damping configurations have been
obtained with a common random seed and using the standard parameter setting for large-scale GA
optimization problems suggested in the Matlab Global Optimization Toolbox. Considering the dimension
and complexity of the problem and the modest computing resources (see Remark 8), the computation
times are notably short, specially when the GA solver is run in parallel mode. Finally, the large number
of objective-function evaluations required to obtain the different optimal configurations indicates that
the computational cost of evaluating the objective function can certainly be a critical bottleneck for the
overall computational effectiveness of the proposed design methodology. In that sense, the presented
matrix formulation for the damped multibuilding model has proved to be a relevant contribution.

Table 2. Computational design characteristics of the linked DDS configurations DC1, DC2 and DC3.

Conf. Act. Build. H∞ Norm opt. vars. Generations funct. aval. Time (s) Parallel Time (s)

Plain conf. — 0.8090 — — — — —
DC1 1, 3, 5 0.0897 47 206 41,400 273.5 67.9
DC2 2, 4 0.0970 34 161 32,400 242.8 57.5
DC3 1 0.1457 37 288 57,800 409.0 103.8

Remark 6. As suggested in the GA solver documentation for problems with a large number of optimization
variables [31], we have introduced some modifications in the default parameter setting of the solver. Specifically,
we have set the values 200 for the PopulationSize, 0.9 for the CrossoverFraction, 20 for the EliteCount and
500 for the MaxGenerations parameters. To take advantage of the CPU multi-core architecture, the GA solver has
been enforced to run in parallel mode by enabling the option UseParallel. Also, to improve the relative accuracy in
the computation of the H∞-norm, the tolerance in the function hinfnorm has been decreased to 10−3 [30].

Remark 7. As indicated in Remark 5, the stochastic character of the GA solver typically produces distinct suboptimal
solutions in different runs of the solver. For simplicity, in this work the Matlab order rng(125) has been used to set
a common random seed for all the computed DDS configurations. That random seed has been arbitrarily chosen,
which confirms the effectiveness of the proposed design methodology and indicates that improved results could be
possibly obtained by exploring a wider set of random seeds [29].

Remark 8. The computation time values presented in Table 2 should only be taken as approximate references, in the
sense that small variations can be observed in the computation time of different runs of the GA solver. Moreover, the
computation time in parallel mode can be significantly affected by the available number of CPU cores. In this work,
all the computations have been carried out with Matlab 2019a on a regular desktop computer equipped with an Intel
Core i7-8700 CPU at 3.20 GHz, 16 GB RAM and a 480GB SSD hard drive.

5. Seismic Responses

To illustrate the behavior of the different DDSs designed in Section 4, we have carried out a proper
set of numerical simulations using the full-scale 180-component of El Centro 1940 seismic record as
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ground acceleration disturbance (see Figure 8). Specifically, for the nonactuated MBS and the damping
configurations DC1, DC2 and DC3, we have computed the maximum absolute interstory drifts

|r̂j
i |max = max

0≤t≤Tw
|r̂j

i(t)|, i = 1, . . . , 5, j = 1, . . . , 5, (80)

the maximum absolute story total-accelerations

|aj
i |max = max

0≤t≤Tw
|aj

i(t)|, i = 1, . . . , 5, j = 1, . . . , 5 (81)

and the maximum interbuilding approachings

(r̃j
i)max = max

0≤t≤Tw
r̃j

i(t), i = 1, . . . , 5, j = 1, . . . , 4, (82)

where r̂j
i(t), aj

i(t) and r̃j
i(t) are the output variables defined in Equations (33), (37) and (40), respectively,

and Tw denotes the total duration of the seismic disturbance.
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Figure 8. Full-scale 180-component of El Centro 1940 ground-acceleration seismic record with an
absolute acceleration-peak of 3.417 m/s2. Data available at Strong-Motion Virtual Data Center (VDC)
(ftp://strongmotioncenter.org/vdc/smdb/1940/c/139u37el.c0a).

The obtained interstory-drift peak-values are presented in Figure 9. A global view of the plots in
that figure indicates that the three designed damping configurations are all able to produce an overall
reduction of the interstory-drift peak-values when compared with the response of the nonactuated MBS
(black solid lines with rectangles). In a more detailed inspection of the DC1 response (red solid lines with
circles), it can be appreciated that the interstory-drift peak-value reduction is particularly effective in the
actuated buildings B(1), B(3) and B(5). A slightly poorer performance can be observed in the nonactuated
buildings B(2) and B(4), whose seismic protection is provided through the linking interbuilding dampers
(see Figure 5). A similar behavior can be observed in the response of the damping configuration DC2
(blue dashed lines with asterisks), where B(2) and B(4) are actuated buildings and B(1), B(3) and B(5) are
nonactuated (see Figure 6). In this case, it is worth noting the loss of performance in the upper level of
building B(2), which is an effect that has been observed in previous works [22] and can be associated to
the action of the interbuilding links. Finally, for the single-actuated-building configuration DC3 (green
dotted lines with triangles), the best results are also attained in the actuated building B(1), and a moderate
but gradual increase of the interstory-drift peak-values can be observed in the nonactuated buildings as
we move away from B(1). Also in this case, a loss of performance associated to the interbuilding links
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can be appreciated in the upper level of the actuated building B(1). The obtained story total-acceleration
peak-values and maximum interbuilding approachings are displayed in Figures 10 and 11, respectively,
using the same colors, line styles and symbols. The plots in Figure 10 confirm that, despite having
only included the interstory drifts in the optimization index, the considered H∞ design approach can
produce a notable reduction of the acceleration peak-values. That reduction is more relevant in the
actuated buildings and smaller but yet significant in the nonactuated ones. Also in this case, it can be
appreciated the progressive loss of performance of the configuration DC3 as we move away from the only
actuated building B(1). Regarding the approaching peak-values, the plots in Figure 11 show that the three
damping configurations are able to keep the interbuilding approachings within remarkably low levels.
In fact, for the considered seismic disturbance, an interbuilding gap of 3.5 cm can be considered a safe
interbuilding separation in all the cases. It is worth noting that the best approaching results are attained
by the single-actuated-building configuration DC3, which can be explained by the stronger interbuilding
damping system of that configuration.
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Figure 9. Maximum absolute interstory drifts corresponding to the nonactuated multibuilding system
(plain configuration) and the damping configurations DC1, DC2 and DC3.
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Figure 10. Maximum absolute story total-accelerations attained by the nonactuated multibuilding system
(plain configuration) and the damping configurations DC1, DC2 and DC3.
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Figure 11. Maximum interbuilding approachings produced by the nonactuated multibuilding system
(plain configuration) and the damping configurations DC1, DC2 and DC3.

To gain a better understanding of the relevance of linked configurations in the seismic protection of
the overall MBS, we have considered an additional unlinked damping configuration DC4 (see Figure 12),
which has been obtained by removing the interbuilding dampers in the linked configuration DC2. The
interstory-drift and acceleration peak-values produced by DC4 are displayed in Figures 13 and 14,
respectively, and the corresponding maximum approachings are presented in Figure 15. The peak-values
produced by the nonactuated MBS and the linked configuration DC2 are also included in those figures
as a reference. Looking at the plots of interstory-drift peak-values in Figure 13, it can be appreciated
that the unlinked configuration DC4 (red dotted lines with triangles) produces better results than the
linked configuration DC2 in the actuated buildings B(2) and B(4), but it provides null protection to the
nonactuated buildings B(1), B(3) and B(5). The plots of acceleration peak-values in Figure 14 indicate that,
in addition of providing null protection to the nonactuated buildings, the unlinked configuration DC4
attains worse results than the linked configuration DC2 in building B(4) and the first story of building
B(2). As to the interbuilding approachings, the plots in Figure 15 show that large approaching peak-values
are produced at the top level of all the buildings by the unlinked configuration DC4, which would require
interbuilding separations of about 20 cm to avoid pounding.
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Figure 12. Fully unlinked damping configuration DC4 obtained by suppressing the interbuilding dampers
in the linked configuration DC2.
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Figure 13. Maximum absolute interstory drifts corresponding to the nonactuated multibuilding system
(plain configuration), the linked configuration DC2 and the unlinked configuration DC4.



Appl. Sci. 2019, 10, 2383 27 of 31

0 2 4 6 8 10

accel. peak (m/s2)

1

2

3

4

5

st
or

y
(a) B1

2 4 6 8 10

accel. peak (m/s2)

(b) B2

2 4 6 8 10

accel. peak (m/s2)

(c) B3

2 4 6 8 10

accel. peak (m/s2)

(d) B4

2 4 6 8 10

accel. peak (m/s2)

(e) B5

Plain conf. DC2 DC4

Figure 14. Maximum absolute story total-accelerations attained by the nonactuated multibuilding system
(plain configuration), the linked configuration DC2 and the unlinked configuration DC4.
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Figure 15. Maximum interbuilding approachings produced by the nonactuated multibuilding system
(plain configuration), the linked configuration DC2 and the unlinked configuration DC4.

Finally, to summarize the global behavior of the nonactuated MBS and the discussed damping
configurations, we consider the overall peak-values of absolute interstory drifts

|r̂|max = max
1≤j≤m

(
max

1≤i≤n
|r̂j

i |max

)
, (83)

absolute story total-accelerations

|a|max = max
1≤j≤m

(
max

1≤i≤n
|aj

i |max

)
(84)

and interbuilding approachings

(r̃)max = max
1≤j≤m−1

(
max

1≤i≤n
(r̃j

i)max

)
. (85)

The obtained overall peak-values and the corresponding H∞-norms are collected in Table 3. The data
in the table indicate that, with respect to the nonactuated MBS, the DDS configurations DC1 and DC2
produce reductions of about 50% in the overall interstory-drift peak-value and around 40% in the overall
acceleration peak-value. The overall reductions attained by the single-actuated-building configuration
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DC3 are around 40% in the interstory-drift and slightly below 30% in the acceleration responses. The
overall maximum approaches are around 3 cm for DC1 and DC2 and inferior to 2 cm for DC3. Those values
indicate that the linked DDSs obtained with the proposed design strategy can provide an overall seismic
protection for the MBS. At the same time, the values corresponding to DC4 illustrate the inefficacy of
unlinked configurations in mitigating the interstory-drift and acceleration seismic response of the overall
MBS and clearly demonstrate their possible detrimental effects on pounding risk.

Table 3. H∞ norm and overall maximum peak-values corresponding to the nonactuated multibuilding
system (plain configuration), the linked configurations DC1, DC2 and DC3, and the unlinked configuration
DC4.

Conf. Act. Build. H∞ Norm Max. drift (cm) Max. accel. (m/s2) Max. Approach. (cm)

Plain — 0.8090 5.38 9.62 0.00
DC1 1, 3, 5 0.0897 2.56 5.71 2.70
DC2 2, 4 0.0970 2.76 5.62 3.15
DC3 1 0.1457 3.25 7.02 1.92
DC4 2, 4 0.6272 5.38 9.62 20.05

Remark 9. The plots in Figure 15 indicate that null interbuilding approachings are produced by the nonactuated
MBS, which can be explained by the synchronized response of the identical buildings subjected to the same seismic
excitation. From a practical point of view, however, it should be observed that there are a number of factors, such as
the differential variation of the building structural parameters over time, the effect of live loads (weight of persons,
furniture, equipment, movable partitions, etc.) or the soil-structure interaction, that can brake the ideal synchrony of
the buildings response and, consequently, increase the risk of pounding.

6. Conclusions

In this work, we have investigated the design of distributed damping systems (DDSs) for the overall
seismic protection of multiple adjacent buildings. The considered DDSs include two different kinds
of damping devices: interstory dampers, which are implemented inside the buildings, and external
interbuilding damping links. To keep the problem complexity within reasonable limits, we have assumed
that the damping elements are linear fluid viscous dampers and the buildings have been considered as
linear planar frames with identical dynamic characteristics. The main objective of the study is designing
suitable DDS configurations that are able to mitigate the buildings seismic response by reducing the
interstory-drift and story-acceleration peak-values and, at the same time, are capable of cutting down
the risk of interbuilding collisions (pounding) by producing small interbuilding approachings. Typically,
designing high-performance DDSs involves solving a mixed allocation-tuning optimization problem,
which includes both determining convenient damper positions and computing proper values for the
damper parameters. The proposed design methodology is based on an effective matrix formulation
of the damped multibuilding system, follows an H∞ approach that permits avoiding costly numerical
simulations of seismic time-responses, exploits the computational advantages of state-of-the-art genetic
algorithm (GA) solvers, and allows setting actuation schemes of particular interest such as full-linked
configurations or nonactuated buildings. To illustrate the main features of the presented design strategy,
three different DDS configurations have been computed for a system of five adjacent multistory buildings.
Also, to explore the performance characteristics of the obtained DDS configurations, a convenient set of
numerical simulations of the corresponding seismic responses have been carried out using the full-scale
180-component of El Centro 1940 seismic record as ground acceleration input. Considering the obtained
results, the following points can be highlighted: (i) properly designed DDSs can provide an overall seismic
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protection to systems of multiple adjacent buildings, being able to mitigate the buildings seismic response
and reduce the pounding risk; (ii) full-linked DDS configurations should be used to attain the seismic
protection of nonactuated buildings and to produce low levels of pounding risk; (iii) a simultaneous
reduction of the buildings interstory-drift and story-accelerations peak values can be attained with the
considered H∞ approach; (iv) the proposed design methodology is highly flexible, being able to produce
high-performance DDS configurations for a wide variety of actuation schemes; and (v) the proposed
approach is computationally effective in dealing with large-scale problems. Regarding that last point,
it should be observed that computational efficiency is a critical factor in DDS design of multibuilding
problems. In this context, a fast evaluation of the objective function and the possibility of running the GA
solver in parallel mode are elements of singular relevance.

After the positive results obtained in the present work, we believe that further research effort should
be invested in obtaining a deeper understanding of the problem and removing some of the model
simplifications introduced in this paper. In that sense, some lines of particular interest include the
usage of inerter-based vibration absorbers [36,37], the study of the effects of interstory and interbuilding
velocities on the multibulding damper allocation problem [38,39], the analysis of the effects produced by
soil-structure interaction [40] and seismic-wave propagation [41] on large multibulding problems, and the
formulation of extended design strategies for elastic-plastic structures [42] and/or nonlinear damping
devices [43].
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