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Abstract: Inerters are a novel type of mechanical actuation devices that are able to produce
large inertial forces with a relatively small mass. Due to this property, inerters can provide an
effective solution to the main drawbacks of tuned mass-dampers and, consequently, they are
gaining an increasing relevance in the field of passive structural vibration control. In this paper,
a computational design strategy for inerter-based vibration control schemes is presented. The
proposed approach combines a computationally effective reduced-frequency H∞ cost-function
and a constrained global optimization solver to design different configurations of a shared tuned
mass-inerter-damper system for the seismic protection of a multi-story two-building structure.
To assess the effectiveness of the obtained configurations, the frequency characteristics and
the seismic response of the interstory drifts and interbuilding approaches are investigated with
positive results.

Keywords: inerters, structural vibration control, multi-structure systems, genetic algorithms,
shared tuned mass-damper

1. INTRODUCTION

Protection of large buildings and civil structures against
the damaging effects of external natural disturbances, such
as wind gusts, earthquakes, or ocean waves is a research
area of significant theoretical and technical interest. In the
past few decades, a large number of active, passive and
semi-active structural vibration control strategies has been
proposed and, some of them, implemented in practice with
positive results [Spencer and Nagarajaiah (2003); Ikeda
(2009); Li and Huo (2010); Rubió-Massegú et al. (2012);
Bakka and Karimi (2013)]. Passive vibration control sys-
tems (PVCS) are simple and robust, and do not require
power supply. A good example of PVCS is the tuned mass-
damper (TMD), which consists in a proper combination of
elastic, damping and mass elements that are attached to
the main structure to absorb and dissipate its vibrational
energy. In order to provide a good level of vibrational
mitigation, the TMD strategy requires the attached mass
to be as large as possible. In the case of large structures,
this fact makes the TMD a huge and massive device whose
accommodation poses serious structural problems [Giaralis
and Taflanidis (2016)].

Inerters are a new kind of passive elements in mechani-
cal systems that are attracting increasing research atten-
tion in recent years. The ideal inerter is a massless two-
terminal device that produces a resistant force of the form
⋆ Partially supported by the Spanish Ministry of Economy and
Competitiveness under Grant DPI2015-64170-R/FEDER.

F (t)= b
(

ẍ2(t) − ẍ1(t)
)

, where ẍ1(t) and ẍ2(t) represent
the inerter terminals’ acceleration and b is a constant
called inertance. A key feature of the actual inerter is
that its inertance can be two or more orders of magni-
tude higher than its mass. As a consequence, light and
compact devices that are able to develop large inertial
forces can be seriously considered in practical applications
[Smith (2002)]. This fact, and the two-terminal character
of the inerter elements, naturally leads to explore new
passive vibration control schemes, such as inerter-based
multi-element distributed systems and more sophisticated
spring-damper-inerter layouts [Chen et al. (2013); Lazar
et al. (2014); Marian and Giaralis (2014)]. In this context,
obtaining efficient tools to compute suitable values for the
inertance, stiffness and damping coefficients appears as a
central issue.

The objective of the present work is twofold: (i) to provide
a proper computational design methodology for the new
inerter-based vibration control schemes, and (ii) to demon-
strate its effectiveness in a structural vibration control
problem of moderate complexity and dimension. To meet
the first goal, we have introduced an appropriate cost
function J(θ), which is based on the discrete approxima-
tion of a restricted frequency-range H∞ norm. This cost
function provides a fast and meaningful evaluation of the
vibrational cost associated to the parameter configuration
θ, and makes it possible to obtain an optimal parameter

configuration θ̂ by using standard tools for constrained
global optimization. To address the second objective, the
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Fig. 1. Multi-story two-building system.

proposed approach has been applied in designing two
different inerter-based vibration control schemes for the
seismic protection of a multi-story two-building structure.
To assess the effectiveness of the obtained optimal configu-
rations, their frequency response characteristics have been
investigated and a proper set of numerical simulations has
been conducted using the full scale North–South El Centro
1940 seismic record as ground acceleration disturbance.

The rest of the paper is organized as follows: In Section 2,
a mathematical model of the two-building structure is pro-
vided. The presented matrix formulation facilitates a clear
and easy inclusion of the design parameters. In Section 3,
the main ideas of the proposed computational design strat-
egy are presented. In Section 4, the two inerter-based
vibration control schemes are computed, and their corre-
sponding frequency and seismic responses are investigated.
Finally, some conclusions and future research directions
are briefly discussed in Section 5.

2. TWO-BUILDING MATHEMATICAL MODEL

Let us consider the multi-story two-building system
schematically shown in Fig. 1. The buildings’ lateral mo-
tion can be described by the second-order model

Mq̈(t) +Cq̇(t) +Kq(t) = Tw w(t),

where q(t) is the vector of displacements with respect
to the ground, M is the generalized mass matrix, C
is the damping matrix, K is the stiffness matrix, Tw

is the disturbance input matrix and w(t) is the ground
acceleration disturbance. The vector of displacements can
be written in the form

q(t) =







q(1)(t)

q(2)(t)

qt(t)






,

where

q(1)(t) =
[

q11(t), . . . , q
1
4(t)

]T
, q(2)(t) =

[

q21(t), . . . , q
2
5(t)

]T
,

q
j
i (t) represents the displacement of the ith story in the

building B(j), and qt(t) is the displacement of the TMD
placed at the top level of the building B(1). The linking
element between the TMD and the building B(2) is an
inerter with an inertance coefficient b, which produces a
resistant force Fb(t)= b (q̈24 − q̈t). The generalized mass
matrix M has the following structure:

M = M0 + b







[0]4×4 [0]4×5 [0]4×1

[0]5×4 diag(p2) −p2

[0]1×4 −pT
2 1






,

where M0 =diag(M(1),M(2),mt) is the mass matrix cor-
responding to null inertance, M(1)=diag(m1

1, . . . ,m
1
4) and

M(2)=diag(m2
1, . . . ,m

2
5) are the mass matrices of the

buildings B(1) and B(2), respectively, mj
i is the mass of the

ith story in the building B(j), mt is the TMD mass, [0]r×s

is a zero matrix of dimensions r × s and the placement
vector p2 = (0, 0, 0, 1, 0)T indicates the story level of the
building B(2) where the inerter element is located. The
stiffness matrix has the following structure:

K = diag(K(1),K(2), 0) + kt







p1p
T
1 [0]4×5 −p1

[0]5×4 [0]5×5 [0]5×1

−pT
1 [0]1×5 1






,

where

K(1) =









k11 + k12 −k12 0 0
−k12 k12 + k13 −k13 0
0 −k13 k13 + k14 −k14
0 0 −k14 k14









,

K(2) =













k21 + k22 −k22 0 0 0
−k22 k22 + k23 −k23 0 0
0 −k23 k23 + k24 −k24 0
0 0 −k24 k24 + k25 −k25
0 0 0 −k25 k25













,

are the stiffness matrices of the buildings B(1) and B(2),
respectively, kji is the stiffness coefficient of the ith story

in the building B(j), kt is the TMD stiffness and the
placement vector p1 = (0, 0, 0, 1)T indicates the story
level of the building B(1) where the TMD is located. The
damping matrix has an analogous structure

C = diag(C(1),C(2), 0) + ct







p1p
T
1 [0]4×5 −p1

[0]5×4 [0]5×5 [0]5×1

−pT
1 [0]1×5 1






,

where ct is the TMD damping and C(j) is the damping
matrix of the building B(j). When the damping coefficients
are known, the matrix C(j) can be obtained by replacing
the stiffness coefficients k

j
i in K(j) by the corresponding

damping coefficients cji . Frequently, however, the values of
the damping coefficients cannot be properly determined
and the matrices C(j) are computed using other methods
[Chopra (2007)]. Finally, the disturbance input matrix can
be written as

Tw = −M0 [1]10×1
,

where [1]
10×1

is a column vector with all its entries equal
to 1. By considering the state vector

x(t) =

[

q(t)
q̇(t)

]

,
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Table 1. Buildings mass and stiffness coefficient values

building B(1) building B(2)

story 1 2 3 4 1 2 3 4 5

mass (×105 Kg) 2.152 2.092 2.070 2.661 2.152 2.092 2.070 2.048 2.661

stiffness (×108 N/m) 1.470 1.130 0.990 0.840 1.470 1.130 0.990 0.890 0.840

we obtain the first-order state-space model

ẋ(t) = Ax(t) +Bw(t),

with system matrices

A =

[

[0]10×10 I10

−M−1K −M−1C

]

, B =

[

[0]10×1

−M−1M0[1]10×1

]

,

where In denotes the identity matrix of order n.

3. DESIGN PROCEDURE

In this section, the main ideas of the proposed compu-
tational design strategy are discussed. An application of
these ideas using a global optimization solver based on
the genetic algorithm approach is presented in the next
section.

In order to describe the overall vibrational response of the
adjacent buildings, we consider two different sets of output
variables: interstory drifts and interbuilding approaches
[Palacios-Quiñonero et al. (2012, 2014)]. The interstory
drifts are the relative displacements between consecutive
stories of the same building, and can be defined as

{

r
j
1(t) = q

j
1(t),

r
j
i (t) = q

j
i (t)− q

j
i−1(t), 1 < i ≤ nj ,

where nj represents the number of stories of the building

B(j). The overall vector of interstory drifts can be written
in the form

r(t) =

[

r(1)(t)

r(2)(t)

]

where r(j)(t) =
[

r
j
1(t), . . . , r

j
nj
(t)

]T

is the vector of inter-

story drifts of the building B(j). By considering the state
vector x(t), the overall vector of interstory drifts can be
computed as

r(t) = Cr x(t),

where the output matrix has the form

Cr =
[

C̃r [0]9×11

]

,

with

C̃r =

[

C(1)
r [0]4×5

[0]5×4 C(2)
r

]

,

C(1)
r =







1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1






, C(2)

r =











1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1











.

The interbuilding approaches

ai(t) = −
(

q2i (t)− q1i (t)
)

, 1 ≤ i ≤ min(n1, n2),

describe the approaching between the stories located at the
same level in adjacent buildings. For our particular two-
building system, the vector of interbuilding approaches

a(t) = [a1(t), . . . , a4(t)]
T
, can be computed as

a(t) = Ca x(t),

Table 2. Buildings natural frequencies

Frequency (Hz)

Building B(1) 1.2404 3.4161 5.3160 6.7272

Building B(2) 1.0082 2.8246 4.4929 5.7974 6.7735

with the output matrix

Ca = [ I 4 −I 4 [0]4×12 ] . (1)

In the present work, the buildings mass, damping and
stiffness are assumed to be known, and the design objective
is to determine suitable values of the TMD parameters
mt, ct, kt, and the inertance b. Although we are interested
in reducing both the interstory drifts and interbuilding
approaches, it should be noted that reduced interstory
drifts always lead to small interbuilding approaches. In
contrast, demanding small interbuilding approaches can
produce large interstory drifts. Considering this fact, the
design procedure is focused on reducing the interstory drift
response. Accordingly, we consider the system

Sθ :

{

ẋ(t) = Aθ x(t) +Bθ w(t),

z(t) = Cr x(t),

where the system matrices Aθ and Bθ are functions of
the parameter vector θ = (mt, ct, kt, b). The basic idea of
the design procedure is simple, it consists in computing

an optimal parameter vector θ̂ by solving a constrained
optimization problem

P :

{

min J(θ),

subject to θ ∈ Θc,
(2)

where J(θ) is an appropriate objective function and Θc is
a suitable parameter domain. In order to make it possible
to use standard tools for constrained global optimization,
the objective function must be able to make a fast and
meaningful evaluation of the vibrational cost associated
to the parameter configuration θ. To meet these require-
ments, we define the objective function J(θ) as the discrete
approximation of a restricted frequency-range H∞ norm.
Specifically, we first consider the system H∞ norm

γ(θ) = sup
0<‖w‖2<∞

‖z‖2
‖w‖2

,

which describes the worst-case energy-gain from the ex-
ternal disturbance w(t) to the controlled output z(t). This
norm can be computed in the frequency domain by using
the transfer function

Tθ(s) = Cr(sI−Aθ)
−1Bθ

and solving the optimization problem

γ(θ) = sup
f∈R

{σmax [Tθ(2πjf)]} ,

where j =
√
−1, f is the frequency in Hz and σmax[·]

denotes the maximum singular value. Next, to reduce the
computational burden without degrading the quality of the
vibrational cost evaluation, we select a suitable frequency
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Fig. 2. Interstory-drifts frequency response for the TMID
configuration.
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Fig. 3. Interbuilding-approaches frequency response for the
TMID configuration.

range Fc, for example, a small interval that contains the
buildings main frequencies, and consider the constrained
γ-value

γc(θ) = max
f∈Fc

{σmax [Tθ(2πjf)]} .

Finally, to obtain a fast estimate of γc(θ), we make a direct
grid search in the frequency range Fc and compute

J(θ) = γ∗
c (θ) = max

i=1,...,nγ

{σmax [Tθ(2πjfi)]} ,

where f1, . . . , fnγ
is a sequence of nγ equally spaced

frequency values in Fc.

4. NUMERICAL RESULTS

4.1 TMID and TID configurations

In this section, the proposed design strategy is applied
to compute suitable parameter values for two different
configurations: (i) a tuned mass-inerter damper (TMID)
setup that combines the actions of the TMD and the
inerter element, and (ii) a tuned inerter-damper (TID)
configuration, which acts as a massless vibration absorber.
The designs and numerical simulations are conducted
using the buildings parameters collected in Table 1. These
mass and stiffness values are similar to those used in
Kurata et al. (1999). The buildings damping matrices (in
Ns/m) are the following:

C(1) = 105 ×
[ 2.6450 −0.9034 0 0
−0.9034 2.2455 −0.7915 0

0 −0.7915 2.0078 −0.6715
0 0 −0.6715 1.3719

]

,

C(2) = 105 ×
[ 2.6017 −0.9244 0 0 0

−0.9244 2.1958 −0.8099 0 0
0 −0.8099 1.9946 −0.7281 0
0 0 −0.7281 1.8670 −0.6872
0 0 0 −0.6872 1.2741

]

,

which have been computed as Rayleigh damping matrices
with a 2% of relative damping on the first and last modes
[Chopra (2007)]. The natural frequencies corresponding
to the unlinked buildings are presented in Table 2. Con-
sidering the values of the main frequencies, we select
the frequency range Fc = [0.85Hz, 1.40Hz] to compute the
constrained gamma value γc(θ), which is approximated by
using a uniform grid of nγ=40 points. The optimization
problem P given in (2) is solved with the function ga()
included in the Matlab Global Optimization Toolbox. This
function provides an implementation of the genetic algo-
rithm and allows defining lower and upper limits for the
optimization variables. The parameter domain Θc is de-

fined by considering an initial estimate θ̃ =
(

m̃t, c̃t, k̃t, b̃
)

and setting lower and upper variables bounds of the fol-
lowing form:

θl=
(

α1m̃t, α2c̃t, α3k̃t, α4b̃
)

, θu=
(

β1m̃t, β2c̃t, β3k̃t, β4b̃
)

.

For the TMID configuration, we set the initial values
m̃t=2 × 104 Kg, c̃t=5 × 105 Ns/m, k̃t=5 × 105 N/m and

b̃=2 × 105 Kg. The selected TMD mass is about a 10%
of the upper story mass and the selected inertance is
similar to the full story mass. The optimization con-
straints are defined with the following coefficients: α1=0.1,
α2=α3=0.01, α4=0.1 and β1=1.2, β2 =β3=10, β4=1.2.
This choice avoids negative values of the optimization
variables, allows a variation of three orders of magnitude
in the damping and stiffness coefficients, and restricts the
mass and inertance values to small variations around the
nominal values. The solver options PolulationSize and
TolFun are set to 75 and 10−5, respectively, and the default
values are used for all the other options. After 57 iter-
ations, the optimization process produces the parameter
configuration m̂t=8.005 × 103 Kg, ĉt=5.721 × 105 Ns/m,

k̂t=1.201 × 106 N/m, b̂=1.150 × 105 Kg and the optimal

cost Ĵ=0.1192. The required number of objective function
evaluations is 4350, and the total computation time is
13.97 seconds.

For the TID configuration, we set the initial values:
m̃′

t=1 × 100 Kg, c̃′t=5 × 103 Ns/m, k̃′t=5 × 106 N/m, and

b̃′=5× 104 Kg. In this second case, the aim is to ob-
tain a massless vibration absorber by enforcing a pure
inerter configuration with low damping and large stiff-
ness. Running the optimization process with the same
set of constraints and options, we obtain the following
parameter values: m̂′

t=1.159Kg, ĉ′t=3.836 × 104 Ns/m,

k̂′t=9.884× 105 N/m, b̂′=2.146× 104 Kg, and the optimal

cost Ĵ ′ = 0.1241. In this second design, the number of
iterations is 53, the count of function evaluations is 3900,
and the total computation time is 12.58 seconds.

The frequency characteristics of the interstory drifts re-
sponse corresponding to the TMID configuration are dis-
played in Fig. 2, where the solid red line presents the
maximum singular values of the transfer function T

θ̂
(s).
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Fig. 4. Interstory-drifts frequency response for the TID
configuration.

The dash-dotted black line shows the frequency response
of the unlinked buildings, which has been taken as a
natural reference. The two large peaks in the unlinked
response are associated to the buildings’ dominant fre-
quencies and the peak value in the TMID configuration
corresponds to the obtained optimal value Ĵ=0.1192. The
frequency characteristics of the interbuilding approaches
response are presented in Fig. 3. In this case, the response
corresponding to the TMID configuration (solid red line)
has been computed using the transfer function from the
external disturbance w(t) to the approaches vector a(t)

T̃
θ̂
(s) = Ca(sI−A

θ̂
)−1B

θ̂
,

where Ca is the approaches output-matrix defined in (1).
For the TID configuration, the frequency characteristics
of the interstory drifts and interbuilding approaches re-
sponse are presented by the solid blue line in Fig. 4 and
Fig. 5, respectively. In an overall inspection of the plots,
it can be appreciated that both configurations produce
a significant reduction of the main frequency peaks. A
closer look reveals that the reduction level is very similar
in the interstory drift response, and that a slightly better
performance is attained by the TMID configuration in
the interbuilding approaches response. This configuration
also produces an appreciable reduction in some of the
secondary frequency peaks.

Remark. All the computations have been carried out using
Matlab c© R2015b on a regular laptop with an Intel c©

CoreTM i7-2640M processor at 2.80GHz.

4.2 Seismic response

In this section, numerical simulations are conducted to
demonstrate the seismic response of the two-building sys-
tem for the obtained TMID and TID configurations. The
full scale North–South El Centro 1940 seismic record is
taken as ground acceleration disturbance (see Fig. 6), and
the interbuilding approaches a(t) together with the build-
ings interstory drifts r(1)(t) and r(2)(t) are computed as
output variables.

The peak-values of the interbuilding approaches are dis-
played in Fig. 7, where the red line with circles corresponds
to the TMID configuration, the blue line with triangles
represents the TID configuration and the black line with
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Fig. 5. Interbuilding-approaches frequency response for the
TID configuration.
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Fig. 7. Interbuilding approaches peak-values.

rectangles shows the response of the unlinked buildings.
The maximum absolute interstory drifts peak-values cor-
responding to the buildings B(1) and B(2) are presented
in Fig. 8 and Fig. 9, respectively, using the same symbols
and colors. A quick inspection of the graphics shows that
a similar reduction in the peak-values seismic response is
attained by the proposed TMID and TID configurations,
which produce a reduction of about 50% in the inter-
building approaches peaks-values, and around a 20% of
reduction in the interstory drift peak-values of the lower
stories in both buildings. The effectiveness in reducing
the interstory drifts peak-values decreases in the upper
stories, and is practically null at the top level. A slightly
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Fig. 8. Interstory drifts peak-values in building B(1).
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Fig. 9. Interstory drifts peak-values in building B(2).

better performance is obtained by the TMID configura-
tion, which is consistent with the information provided
by the frequency-response plots. However, it should be
highlighted that the inertance coefficient of an inerter
element can be several orders of magnitude larger than its
actual mass and, consequently, the response obtained by
the TID configuration corresponds to a passive vibration
control system with practically negligible mass.

Remark. To avoid the modeling complexity of interbuild-
ing impacts, the seismic responses have been computed
assuming that the interbuilding separation is large enough
to avoid collisions. In this case, the maximum values of
the interbuilding approaches can be understood as lower
bounds of safe interbuilding separation. Looking at the
plots in Fig. 7, it can be appreciated that an interbuilding
separation of 16 cm can be considered safe for the proposed
TMID and TID configurations. In contrast, a separation
of 25 cm would have produced interbuilding collisions in
the unlinked configuration.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, a computational strategy for the optimal
design of passive vibration control systems has been pre-
sented. In addition to the typical elastic, damping and
mass elements, the proposed approach allows including the
novel inerter elements, which make it possible designing
vibration absorber systems with a practically negligible
mass. To illustrate the main ideas, two different tuned
mass-inerter-damper configurations have been designed
for the seismic protection of a multi-story two-building
structure with positive results. Future lines of research
include applying the proposed design methodology to ob-

tain a suitable tuning of complex configurations, such as
inerter-based multi-element distributed systems and more
sophisticated spring-damper-inerter layouts.
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