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Abstract. Distributed control systems for vibration control of large structures involve a large

number of actuation devices and sensors that work coordinately to produce the desired con-

trol actions. Design strategies based on linear matrix inequality (LMI) formulations allow

obtaining controllers for these complex control problems, which are characterized by large di-

mensionality, high computational cost and severe information constraints. In this paper, we

conduct a comparative study of the computational effectiveness of three different LMI-based

controller design strategies: H∞, energy-to-peak and energy-to-componentwise-peak. The H∞

approach is a well-known design methodology and has been widely used in the literature. The

energy-to-peak approach is a particular case of generalized H2 design that is gaining a grow-

ing relevance in structural vibration control. Finally, the energy-to-componentwise-peak ap-

proach is a less common case of generalized H2 design that produces promising results among

the three considered approaches. These controller design strategies are applied to synthesize

active state-feedback controllers for the seismic protection of a five-story building and a twenty-

story building both equipped with complete systems of interstory actuation devices. To evaluate

the computational effectiveness of the proposed LMI design methodologies, the corresponding

computation times are compared and a suitable set of numerical simulations is carried out to

assess the performance of the obtained controllers. As positive results, two main facts can

be highlighted: the computational effectiveness of the energy-to-peak control design strategy

and the particularly well-balanced behavior exhibited by the energy-to-componentwise-peak

controllers. On the negative side, it has to be mentioned the computational inefficiency of the

considered LMI design methodologies to properly deal with very-large-scale control problems.
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1 INTRODUCTION

Over the last years, controller design strategies based on linear matrix inequality (LMI) for-

mulations have been attracting increasing interest [1]. In the field of vibration control of large

structures, these design strategies allow obtaining optimal controllers for complex control prob-

lems that involve a large number of actuation devices and sensors, and are typically character-

ized by large dimensionality, high computational cost and severe information constraints [2–7].

An important family of controller design methodologies for linear systems is based on the

idea of minimizing the worst-case gain from the disturbance-input w(t) to the closed-loop

controlled-output z(t), which can be modeled as the value

sup
‖w‖w 6=0

‖z‖z
‖w‖w

, (1)

where ‖ · ‖z and ‖ · ‖w denote particular signal norms defined on the controlled-output and

disturbance-input sets, respectively. Broadly speaking, an optimal controller is computed by

minimizing the worst-case gain and, simultaneously, demanding asymptotic stability of the

closed-loop system. From a computational point of view, an important fact is that some of

these optimization problems can be formulated in terms of LMIs and solved using the existing

LMI solvers [8]. Following this approach, different control design strategies can be obtained

by selecting different signal norms in the controlled-output and disturbance-input spaces. In the

present work, three different signal norms are considered: (i) the continuous 2-norm

‖f‖2 =

[∫ ∞

0

fT (t)f(t)dt

]1/2
, (2)

which is commonly understood as the signal energy content, (ii) the usual continuous peak-

norm

‖f‖∞ = sup
0≤t<+∞

[
fT (t)f(t)

]1/2
(3)

and (iii) the componentwise-peak-norm

‖f‖∞,cw = sup
0≤t<+∞

max
i

|fi(t)| = max
i

sup
0≤t<+∞

|fi(t)|, (4)

where f(t) = [f1(t), . . . , fn(t)]
T is a real vector of dimension n. The objective of the paper

is to conduct a comparative study of the computational effectiveness of three different LMI-

based controller design strategies: H∞, energy-to-peak and energy-to-componentwise-peak.

The H∞ approach is a well-known design methodology that uses the 2-norm to measure both

the controlled-output and the disturbance-input [9–15]. The energy-to-peak approach is a par-

ticular case of generalized H2 design [16] that is gaining a growing relevance in structural

vibration control [17–20]. This second case uses the 2-norm for the disturbance-input and the

peak-norm for the controlled-output. Finally, the energy-to-componentwise-peak approach is a

less common case of generalized H2 design, which uses the 2-norm for the disturbance input

and the componentwise-peak-norm for the controlled-output [21]. These three controller design

strategies are applied to synthesize active state-feedback controllers for the seismic protection

of a five-story building and a twenty-story building equipped with complete systems of inter-

story actuation devices. To assess the performance of the obtained controllers, a proper set of

numerical simulations is conducted and the computational effectiveness of the proposed LMI

design methodologies is evaluated by comparing the corresponding computation times.
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The rest of the paper is organized as follows: In Section 2, a brief summary of the LMI for-

mulations corresponding to the H∞, energy-to-peak and energy-to-componentwise-peak con-

troller design strategies is presented. In Section 3, a mathematical model for a n-story building

is provided. In Section 4, the controllers corresponding to the three proposed design strategies

are computed, the computation times are compared and the results of the numerical simulations

are discussed. Finally, some conclusions are presented in Section 5.

2 LMI CONTROLLER DESIGN STRATEGIES

Let us consider the system
{
ẋ(t) = Ax(t) + Bu(t) + Ew(t)

z(t) = Cx(t) +Du(t)
(5)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the control input, w(t) ∈ R
nw is the disturbance

input, z(t) ∈ R
nz is the controlled output and A, B, E, C, D are constant real matrices with

appropriate dimensions. Given a state-feedback controller

u(t) = Gx(t), (6)

with state gain matrix G ∈ R
nu×nx , we obtain the closed-loop system

{
ẋ(t) = AGx(t) + Ew(t)

z(t) = CGx(t)
(7)

where

AG = A+BG, CG = C +DG. (8)

The worst-case gain from the disturbance-input to the closed-loop controlled-output associated

to the control gain matrix G can be modeled by the system norm

γ(G) = sup
‖w‖w 6=0

‖z‖z
‖w‖w

, (9)

where ‖ · ‖z and ‖ · ‖w denote particular signal norms defined on the controlled-output and

disturbance-input spaces, respectively. An optimal state-feedback controller

u(t) = G̃x(t) (10)

can then be obtained by solving the following optimization problem:

min
G

{γ(G) : AG asymptotically stable}. (11)

The H∞ controller design considers the system norm

γ∞(G) = sup
‖w‖2 6=0

‖z‖2
‖w‖2

, (12)

where ‖ · ‖2 is the continuous 2-norm in (2). The optimization problem (11) corresponding to

this case can be formulated as the following LMI optimization problem [1]:

P∞ :

{
maximize η

subject to X > 0, η > 0 and the LMI in (14)
(13)
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[
AX +XAT +BY + Y TBT + ηEET (CX +DY )T

CX +DY −Inz

]
< 0, (14)

where X = XT ∈ R
nx×nx and Y ∈ R

nu×nx are the optimization variables and In is the identity

matrix of order n . If an optimal value η̃∞ is attained in P∞ for the pair
(
X̃∞, Ỹ∞

)
, then the

state gain matrix

G̃∞ = Ỹ∞X̃−1

∞ (15)

is an optimal solution to the H∞ controller synthesis problem and the corresponding γ-value

can be computed as

γ̃∞ = γ∞
(
G̃∞

)
=

(
η̃∞

)−1/2
. (16)

The energy-to-peak controller design uses the system norm

γp(G) = sup
‖w‖2 6=0

‖z‖∞
‖w‖2

, (17)

where ‖ · ‖2 is the 2-norm in (2) and ‖ · ‖∞ is the peak-norm given in (3). The optimization

problem (11) associated to this second case admits the following LMI formulation [16]:

Pp :

{
minimize η

subject to the LMIs in (19) and (20)
(18)

AX +XAT +BY + Y TBT + EET < 0, (19)

[
X (CX +DY )T

CX +DY ηInz

]
> 0, (20)

with LMI variables X = XT ∈ R
nx×nx , Y ∈ R

nu×nx . If an optimal value η̃p is attained in Pp

for the pair
(
X̃p, Ỹp

)
, then the state gain matrix

G̃p = ỸpX̃
−1

p (21)

is an optimal solution to the energy-to-peak controller synthesis problem with an associated

γ-value

γ̃p = γp

(
G̃p

)
=

(
η̃p

)1/2
. (22)

Finally, the energy-to-componentwise-peak controller design considers the system norm

γcwp(G) = sup
‖w‖2 6=0

‖z‖∞,cw

‖w‖2
, (23)

where ‖ · ‖2 is the usual 2-norm and ‖ · ‖∞,cw is the componentwise-peak-norm defined in (4).

The optimization problem corresponding to this third case

min
G

{γcwp(G) : AG asymptotically stable} (24)

can be formulated as follows [16]:

Pcwp :

{
minimize η

subject to the LMIs in (26) and (27)
(25)
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Figure 1: Building structure equipped with interstory actuation devices.

AX +XAT +BY + Y TBT + EET < 0, (26)

[
X (CiX +DiY )T

CiX +DiY η

]
> 0, for 1 ≤ i ≤ nz, (27)

where Ci and Di denote the ith row of the matrices C and D, respectively, and X = XT ∈
R

nx×nx , Y ∈ R
nu×nx are the LMI variables. As it happened in the previous designs, if an

optimal value η̃cwp is attained in Pcwp for the pair
(
X̃cwp, Ỹcwp

)
, then the state gain matrix

G̃cwp = ỸcwpX̃
−1

cwp (28)

is an optimal solution to the energy-to-componentwise-peak controller synthesis problem with

an associated γ-value

γ̃cwp =
(
η̃cwp

)1/2
. (29)

3 BUILDING MODEL

Let us consider the n-story building structure schematically depicted in Figure 1, where ai,

i = 1, . . . , n, represents an interstory actuation device implemented between the stories si−1

and si, w(t) denotes the seismic ground acceleration and ui(t) is the control action exerted by
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the actuator ai, which produces a pair of opposite structural forces as indicated in the figure. By

considering the vector of displacements

q(t) =
[
q1(t), . . . , qn(t)

]T
, (30)

where qi(t) is the lateral displacement of the story si with respect to the ground level s0, the

lateral motion of the structure can be described by the differential equation

M q̈(t) + Cd q̇(t) +K q(t) = Tuu(t) + Tww(t), (31)

where

u(t) =
[
u1(t), . . . , un(t)

]T
(32)

is the vector of control actions, M , Cd and K are the mass, damping and stiffness matrices,

respectively, Tu is the control location matrix and Tw is the excitation input matrix. The mass

matrix is a diagonal matrix

M =




m1

· · ·
· · ·

mn


 (33)

and the stiffness matrix has the following tridiagonal structure:

K =




k1 + k2 −k2
−k2 k2 + k3 −k3

· · · · · · · · ·
· · · · · · · · ·

−kn−1 kn−1 + kn −kn
−kn kn



, (34)

where mi and ki, i = 1, . . . , n denote the mass and stiffness coefficients of the i-th story,

respectively. The damping matrix Cd can be computed from M and K by setting a proper

damping ratio on the building modes [22], the control location matrix is a square matrix of size

n with the following upper-diagonal band form:

Tu =




1 −1
1 −1

· · · · · ·
· · · · · ·

1 −1
1



, (35)

and the excitation input matrix has the form

Tw = −M [1]n×1, (36)

where [1]n×1 denotes a vector of dimension n with all its entries equal to 1. By introducing the

interstory drifts {
r1(t) = q1(t)

ri(t) = qi(t)− qi−1(t) for i = 2, . . . , n,
(37)
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story 1 2 3 4 5

mass (×105 Kg) 2.152 2.092 2.070 2.048 2.661

stiffness (×108 N/m) 1.470 1.130 0.990 0.890 0.840

relative damping 5%

Table 1: Parameter values corresponding to the five-story building model.

and the augmented state vector

x(t) =

[
r(t)
ṙ(t)

]
, (38)

we obtain the following first-order state-space model:

ẋ(t) = Ax(t) + B u(t) + E w(t), (39)

with

A = P ÂP−1, B = P B̂, E = P Ê, (40)

Â =

[
[0]n×n In

−M−1K −M−1Cd

]
, B̂ =

[
[0]n×n

M−1Tu

]
, Ê =

[
[0]n×1

−[1]n×1

]
, (41)

where [0]n×m represents a zero-matrix of the indicated dimensions and P is the change-of-basis

matrix corresponding to the state transformation
[
r(t)
ṙ(t)

]
= P

[
q(t)
q̇(t)

]
. (42)

Assuming that the control objective is to reduce the interstory drift values in the seismically

excited building by means of moderate control actions, we also consider the controlled-output

vector

z(t) = Cx(t) +Du(t), (43)

defined by the matrices

C =

[
In [0]n×n

[0]n×n [0]n×n

]
, D = α

[
[0]n×n

In

]
, (44)

where α is a scaling factor that compensates the different magnitude of interstory drifts and

control forces.

4 NUMERICAL RESULTS

Let us consider the particular five-story building model [23] corresponding to the mass, stiff-

ness and damping parameters presented in Table 1. For this small-building problem, we first

solve the LMI optimization problem P∞ in (13) with the matrices A, B and E in (40) and the

controlled-output matrices in (44) with n= 5 and the scaling factor α = 10−7.3, obtaining the H∞

control gain matrix

G̃∞ =106×




−1.7423 0.8569 −0.2631 −0.1886 −0.1406 −1.6424 −1.4244 −1.1155 −0.7819 −0.4437
−0.2858 −2.3937 1.0316 −0.2427 −0.1045 −1.8366 −1.7286 −1.4129 −1.0100 −0.5778
0.9696 −0.7657 −2.7917 0.9250 −0.1450 −1.6440 −1.6154 −1.4853 −1.1130 −0.6484
0.6555 0.7633 −0.7879 −3.2342 0.5932 −1.2969 −1.2853 −1.2396 −1.0883 −0.6678
0.4777 0.3678 0.4047 −0.6065 −3.5459 −0.7887 −0.7835 −0.7630 −0.7086 −0.5564


.

(45)
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Figure 2: North-South El Centro 1940 seismic record scaled to 1m/s2.

controller H∞ ETP ETCWP

computation time (s) 0.6724 0.2105 0.3209

Table 2: Computation time (in seconds) corresponding to the H∞, energy-to-peak (ETP) and energy-to-

componentwise-peak (ETCWP) control gain matrices obtained for the five-story building.

Next, we solve the optimization problem Pp in (18) with the same matrices A, B, E , and C

used in the previous design, and the matrix D corresponding to the values n= 5 and α = 10−7.55.

As a result, we obtain the following energy-to-peak control gain matrix:

G̃p =107×




2.0601 −0.0664 −0.6853 −0.9248 −0.6478 −0.2957 −0.1719 −0.1008 −0.0544 −0.0253
1.5023 −0.1639 −0.4423 −0.6833 −0.4994 −0.1944 −0.2417 −0.1429 −0.0877 −0.0453

−0.5285 0.2894 −0.2447 0.2835 0.1484 −0.1126 −0.1279 −0.1886 −0.0995 −0.0532
−1.8625 0.0735 0.8007 0.3661 0.6780 −0.0563 −0.0626 −0.0846 −0.1506 −0.0606
−1.7561 −0.0616 0.7355 0.9459 0.0174 −0.0237 −0.0239 −0.0341 −0.0533 −0.1178


.

(46)

Finally, by solving the optimization problem Pcwp in (25) with the same matrices A, B, E , C

and D used in the energy-to-peak design, we obtain the energy-to-componentwise-peak control

gain matrix

G̃cwp =106×




−3.2275 4.1177 −0.9820 −0.7206 −0.6506 −2.2112 −1.3045 −0.9855 −0.7097 −0.3988
−6.1129 −9.5642 −2.3243 −1.1240 −0.3647 −1.1163 −1.5038 −0.9947 −0.6253 −0.3360
1.7722 0.1933 −7.6837 −5.2039 −0.9188 −1.3303 −1.3716 −1.5983 −1.0710 −0.5912
1.7341 2.9811 5.6210 −4.0119 −6.3957 −1.3482 −1.2888 −1.3998 −1.5583 −0.9837
2.0888 1.3659 1.4997 8.0527 1.5823 −0.9926 −1.0051 −1.0788 −1.2018 −1.0811


.

(47)

All the controllers in this section have been computed with the LMI solver included in the

MATLAB Robust Control Toolbox [8] and using a personal computer with a two-core Intel i5

processor. The computation times corresponding to the control gain matrices G̃∞, G̃p and G̃cwp

are collected in Table 2.

To demonstrate the performance of the proposed controllers, a suitable set of numerical sim-

ulations has been carried out using the scaled North-South El Centro 1940 seismic record as

a ground acceleration input (see Figure 2). The obtained absolute interstory-drift peak-values

are displayed in Figure 3(a), where the black line with squares represents the uncontrolled re-

sponse, the blue line with circles corresponds to the H∞ controller u(t)= G̃∞ x(t), the green

line with triangles presents the response of the energy-to-peak controller u(t)= G̃p x(t) and the

red line with asterisks describes the energy-to-componentwise-peak controller u(t)= G̃cwp x(t).
The corresponding absolute control-effort peak-values are displayed in Figure 3(b) using the
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Figure 3: Response of the five-story building model corresponding to the scaled North-South El Centro 1940

seismic record for the uncontrolled configuration (black line with squares), the H∞ controller (blue line with

circles), the energy-to-peak controller (green line with triangles) and the energy-to-componentwise-peak controller

(red line with asterisks). (a) Maximum absolute interstory drifts. (b) Maximum absolute control efforts.

story 1–5 6–11 12–14 15–17 18–19 20

mass (×106 Kg) 1.10 1.10 1.10 1.10 1.10 1.10

stiffness (×108 N/m) 8.62 5.54 4.54 2.91 2.56 1.72

relative damping 5%

Table 3: Parameter values corresponding to the twenty-story building model.

same colors and symbols.

Looking at the matrices in (45), (46) and (47) it can be appreciated that the proposed design

methods certainly produce different results. A quick inspection of the plots in Figure 3 reveals

two clear facts: (i) the three controllers provide a good level of seismic protection with similar

levels of control effort and (ii) the energy-to-componentwise-peak controller exhibits a partic-

ularly well-balanced behavior. The computation times in Table 2 also indicate two facts: (i)

all the proposed design strategies demand very small computation times and, consequently, are

suitable for control problems involving small-size building models and (ii) the shortest compu-

tation time is attained by the energy-to-peak controller.

Now we consider the twenty-story building model [10] corresponding to the mass, stiffness

and damping parameters presented in Table 3. For this large-building problem, we compute an

H∞ controller by solving the LMI optimization problem P∞ in (13) with the matrices A, B and

E corresponding to the values in Table 3 and the controlled-output matrices in (44) with n= 20
and the scaling factor α = 10−8.0. We also design an energy-to-peak controller and an energy-

to-componentwise-peak controller by solving the optimization problems Pp in (18) and Pcwp in

(25), respectively, with the same matrices A, B, E and C used in the H∞ design and the matrix

D defined by n= 20 and the scaling factor α = 10−8.2. The computation times corresponding to

this second set of controllers are collected in Table 4. To illustrate the seismic performance of

the proposed design strategies in this harder control problem, the twenty-story building vibra-

tion response has been numerically simulated using also the scaled North-South El Centro 1940
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Figure 4: Response of the twenty-story building model corresponding to the scaled North-South El Centro 1940

seismic record for the uncontrolled configuration (black line with squares), the H∞ controller (blue line with

circles), the energy-to-peak controller (green line with triangles) and the energy-to-componentwise-peak controller

(red line with asterisks). (a) Maximum absolute interstory drifts. (b) Maximum absolute control efforts.

controller H∞ ETP ETCWP

computation time (s) 169.25 60.63 458.24

Table 4: Computation time (in seconds) corresponding to the H∞, energy-to-peak (ETP) and energy-to-

componentwise-peak (ETCWP) controllers designed for the twenty-story building model.

seismic record as ground acceleration input. The corresponding absolute interstory-drift and

absolute control-effort peak-values are displayed in Figure 4(a) and Figure 4(b), respectively,

using the same colors and symbols: black line with squares for the uncontrolled response, blue

line with circles for the H∞ controller, green line with triangles for the energy-to-peak controller

and red line with asterisks for the energy-to-componentwise-peak controller.

The inspection of the plots in Figure 4 indicates that the same two facts observed in the

five-story building problem still hold in the present case: (i) the three controllers provide a

good level of seismic protection with similar levels of control effort and (ii) a particularly well-

balanced behavior is exhibited by the energy-to-componentwise-peak controller. Looking at the
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computation times in Table 4 and comparing with the data in Table 2, three main facts can be

appreciated: (i) the best results are still attained by the energy-to-peak controller, (ii) all compu-

tation times are significantly larger and, (iii) a particularly larger computation time is required

by the energy-to-componentwise-peak controller. The good computational performance of the

energy-to-peak design strategy is a remarkable fact that converts this design methodology in

an interesting option for vibration control of large structures. The observed increment of the

computation times can be partially explained by the increase in the number of LMI variables. It

should be observed that, in the general case of a n-story building with n actuation devices, the

dimensions of the LMI variable matrices X and Y are 2n×2n and n×2n, respectively, and the

total number of variables in the considered LMI optimization problems is 4n2 + n. This means

that a controller design for a five-story building involves 105 LMI variables while a twenty-

story building design requires 1620 LMI variables. Additionally, the larger computation time

required by the energy-to-componentwise-peak design in the twenty-story building problem is

consistent with the higher complexity of the corresponding LMI formulation.

5 CONCLUSIONS

In this paper, we have conducted a comparative study of three LMI-based controller design

strategies for structural vibration control, paying special attention to the computational effec-

tiveness in large-dimension problems. Together with the well-known H∞ approach, the study

includes the energy-to-peak and energy-to-componentwise-peak methodologies, which are par-

ticular cases of generalized H2 designs. These three controller design strategies have been

applied to synthesize active state-feedback controllers for the seismic protection of a five-story

building and a twenty-story building, both equipped with a complete system of interstory actu-

ation devices. The corresponding computation times have been considered to evaluate the com-

putational effectiveness of the proposed design strategies and a proper set of numerical simula-

tions has been carried out to assess the performance of the obtained controllers. In the five-story

building problem, all the proposed design strategies have demanded computation times inferior

to one second and the obtained controllers provide a good level of seismic protection with simi-

lar levels of control effort. In the twenty-story building problem, a good level of performance is

also attained by all the controllers but an important increment of the computation times has been

observed and significant differences can be appreciated in the computational effectiveness of the

different design strategies. Overall, the following three main facts can be highlighted: (i) signif-

icantly shorter computation times are required by the synthesis of energy-to-peak controllers,

(ii) a particularly well-balanced behavior is exhibited by the energy-to-componentwise-peak

controllers and (iii) important computational difficulties should be expected when applying the

considered controller design strategies to very-large-scale control problems.

ACKNOWLEDGMENTS

This work was partially supported by the Spanish Ministry of Economy and Competitiveness

under Grant DPI2015-64170-R.

REFERENCES

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in

System and Control Theory. SIAM, Philadelphia, USA, 1994.



F. Palacios-Quiñonero, J. Rubió-Massegú, J.M. Rossell and H.R. Karimi

[2] G.W. Housner, L.A. Bergman, T.K. Caughey et al. Structural control: Past, present, and

future. Journal of Engineering Mechanics, 123(9):897–971, 1997.

[3] B.F. Spencer and S. Nagarajaiah. State of the art of structural control. Journal of Structural

Engineering, 129(7):845–856, July 2003.

[4] S.Y. Chu, T.T. Soong, and A.M. Reinhorn. Active, Hybrid and Semi-Active Structural

Control. Wiley, 2005.

[5] Y. Ikeda. Active and semi-active vibration control of buildings in Japan - Practical ap-

plications and verification. Structural Control and Health Monotoring, 16(7–8):703–723,

2009.

[6] H. Li and L. Huo. Advances in structural control in civil engineering in China. Mathe-

matical Problems in Engineering, pages 1–23, 2010.
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[15] F. Palacios-Quiñonero, J. Rubió-Massegú, J.M. Rossell, and H.R. Karimi. Feasibility

issues in static output-feedback controller design with application to structural vibration

control. Journal of the Franklin Institute, 351(1):139–155, 2014.

[16] M.A. Rotea. The generalized H2 control problem. Automatica, 29(2):373–385, 1993.
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