102 research outputs found

    Methane emissions from an alpine fen in central Switzerland

    Get PDF
    Methane emissions and below ground methane pore water concentrations were determined in an alpine fen at 1,915m a.s.l. in central Switzerland. The fen represented an acidic (pH 4.5-4.9), nutrient-poor to mesotrophic habitat dominated by Carex limosa, Carex rostrata, Trichophorum caespitosum and Sphagnum species. From late fall to late spring the fen was snow-covered. Throughout winter the temperatures never dropped below 0°C at 5cm below the vegetation surface. Methane emissions in June, July, August and September were in the range of 125 (±26)-313 (±71)mgCH4m−2day−1 with a tendency to decrease along the summer season. Mean methane pore water concentrations at a depth of 20-40cm below the vegetation surface were 526 (±32)μM in June and in the range of 144 (±10)-233 (±7)μM in July, August and September. At a depth of 0-20cm the mean methane pore water concentrations dropped back to <20μM with an almost linear decrease between 0 and 15cm. Oxygen pore water concentrations were close to air saturation in the first few centimeters and dropped back below detection limit at a depth of 20cm. In July and August the pore water concentrations of dissolved organic carbon (DOC) were in the range of 7.2-10.1mgCl−1 at all depths. The pore water concentrations of acetate, formate and oxalate were in the range of 2.0-8.2μM at all depths. Methanotrophic and methanogenic communities were quantified using pmoA and mcrA, respectively, as marker genes. The abundances of both communities showed a distinct peak at a depth of 10-15cm below the vegetation surfac

    Influence of Microbial Growth on Hydraulic Properties of Pore Networks

    Get PDF
    From laboratory experiments it is known that bacterial biomass is able to influence the hydraulic properties of saturated porous media, an effect called bioclogging. To interpret the observations of these experiments and to predict possible bioclogging effects on the field scale it is necessary to use transport models, which are able to include bioclogging. For these models it is necessary to know the relation between the amount of biomass and the hydraulic conductivity of the porous medium. Usually these relations were determined using bundles of parallel pore channels and do not account for interconnections between the pores in more than one dimension. The present study uses two-dimensional pore network models to study the effects of bioclogging on the pore scale. Numerical simulations were done for two different scenarios of the growth of biomass in the pores. Scenario 1 assumes microbial growth in discrete colonies clogging particular pores completely. Scenario 2 assumes microbial growth as a biofilm growing on the wall of each pore. In both scenarios the hydraulic conductivity was reduced by at least two orders of magnitude, but for the colony scenario much less biomass was needed to get a maximal clogging effect and a better agreement with previously published experimental data could be found. For both scenarios it was shown that heterogeneous pore networks could be clogged with less biomass than more homogeneous one

    Recovery of in-situ methanotrophic activity following acetylene inhibition

    Get PDF
    Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2). To understand CH4 cycling, quantitative information about microbial CH4 oxidation in soils is essential. Field methods such as the gas push-pull test (GPPT) to quantify CH4 oxidation are often used in combination with specific inhibitors, such as acetylene (C2H2). Acetylene irreversibly binds to the enzyme methane monooxygenase, but little is known about recovery of CH4 oxidation activity after C2H2 inhibition in situ, which is important when performing several experiments at the same location. To assess recovery of CH4 oxidation activity following C2H2 inhibition, we performed a series of GPPTs over 8 weeks at two different locations in the vadose zone above a petroleum hydrocarbon-contaminated aquifer in Studen, Switzerland. After 4 weeks a maximum recovery of 30% and 50% of the respective initial activity was reached, with a subsequent slight drop in activity at both locations. Likely, CH4 oxidation activity and CH4 concentrations were too low to allow for rapid recovery following C2H2 inhibition at the studied locations. Therefore, alternative competitive inhibitors have to be evaluated for application in conjunction with GPPTs, especially for sites with low activit

    Recovery of in-situ methanotrophic activity following acetylene inhibition

    Get PDF
    Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2). To understand CH4 cycling, quantitative information about microbial CH4 oxidation in soils is essential. Field methods such as the gas push-pull test (GPPT) to quantify CH4 oxidation are often used in combination with specific inhibitors, such as acetylene (C2H2). Acetylene irreversibly binds to the enzyme methane monooxygenase, but little is known about recovery of CH4 oxidation activity after C2H2 inhibition in situ, which is important when performing several experiments at the same location. To assess recovery of CH4 oxidation activity following C2H2 inhibition, we performed a series of GPPTs over 8 weeks at two different locations in the vadose zone above a petroleum hydrocarbon-contaminated aquifer in Studen, Switzerland. After 4 weeks a maximum recovery of 30% and 50% of the respective initial activity was reached, with a subsequent slight drop in activity at both locations. Likely, CH4 oxidation activity and CH4 concentrations were too low to allow for rapid recovery following C2H2 inhibition at the studied locations. Therefore, alternative competitive inhibitors have to be evaluated for application in conjunction with GPPTs, especially for sites with low activit

    Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis

    Get PDF
    The effect of the passage through the gut of the earthworm Lumbricus terrestris L. on fungi and bacteria ingested with decomposing leaves of Taraxacum officinale and with soil was quantified using image analysis tools. Both leaf and soil material were labeled with fluorescent latex microbeads to allow a quantification of the food sources in the fore-, mid-, and hindgut of the earthworms. The content of leaf material in the gut varied in a range between 4 and 59% of the total gut content in different earthworms and the different parts of the intestine of individual animals. Filamentous fungi in the gut compartments were found to originate mainly from leaf material (7700±1800 μg (g leaf (dry wt.))−1), however, the major part was disrupted before arriving in the intestine. Remaining hyphae in the foregut with a biomass of up to 900±150 μg (g gut content (dry wt.))−1 were completely digested during passage through the earthworm gut. Spores of fungi were not detected in our studies. Bacterial cell numbers in the gut compartments ranged from 63±5×108 to 327±16×108 (g gut content (dry wt.))−1 and were significantly higher than the numbers found in the soil (50±1×108 cells (g soil (dry wt.))−1). Cell numbers usually increased from fore- to hindgut. This increase was not correlated to contents of organic material and only partially due to a multiplication of bacterial cells. Numbers of dividing cells accounted in total for approximately 12% of all bacteria, increasing significantly from fore- to hindgut, counts were from 10±1×108 to 25±2×108 (g gut content (dry wt.))−1, respectively. Average cell volumes of bacteria calculated from cell size distributions in leaf and soil material differed significantly, being 0.197 and 0.063 μm3, respectively. In the gut compartments, average cell volumes ranged from 0.043 to 0.070 μm3, which may indicate the disruption of large cells originating from the leaves before arriving in the foregu

    Succession of N cycling processes in biological soil crusts on a Central European inland dune

    Get PDF
    Biological soil crusts (BSCs) are microbial assemblages that occur worldwide and facilitate ecosystem development by nitrogen (N) and carbon accumulation. N turnover within BSC ecosystems has been intensively studied in the past; however, shifts in the N cycle during BSC development have not been previously investigated. Our aim was to characterise N cycle development first by the abundance of the corresponding functional genes (in brackets) and second by potential enzyme activities; we focussed on the four processes: N fixation (nifH), mineralisation as proteolysis and chitinolysis (chiA), nitrification (amoA) and denitrification (nosZ). We sampled from four phases of BSC development and from a reference located in the rooting zone of Corynephorus canescens, on an inland dune in Germany. BSC development was associated with increasing amounts of chlorophyll, organic carbon and N. Potential activities increased and were highest in developed BSCs. Similarly, the abundance of functional genes increased. We propose and discuss three stages of N process succession. First, the heterotrophic stage (mobile sand without BSCs) is dominated by mineralisation activity. Second, during the transition stage (initial BSCs), N accumulates, and potential nitrification and denitrification activity increases. Third, the developed stage (established BSCs and reference) is characterised by the dominance of nitrificatio

    Sulfate-reducing bacterial community response to carbon source amendments in contaminated aquifer microcosms

    Get PDF
    Microbial sulfate reduction is an important metabolic activity in many reduced habitats. However, little is known about the sulfate-reducing communities inhabiting petroleum hydrocarbon (PHC)-contaminated freshwater aquifer sediments. The purpose of this study was to identify the groups of sulfate-reducing bacteria (SRB) selectively stimulated when sediment from a PHC-contaminated freshwater aquifer was incubated in sulfate-reducing aquifer microcosms that were amended with specific carbon sources (acetate, butyrate, propionate, lactate, and citrate). After 2 months of incubation, the SRB community was characterized using phospholipid fatty acid (PLFA) analysis combined with multivariate statistics as well as fluorescence in situ hybridization (FISH). Molybdate was used to specifically inhibit SRB in separate microcosms to investigate the contribution of non-SRB to carbon source degradation. Results indicated that sulfate reduction in the original sediment was an important process but was limited by the availability of sulfate. Substantially lower amounts of acetate and butyrate were degraded in molybdate treatments as compared to treatments without molybdate, suggesting that SRB were the major bacterial group responsible for carbon source turnover in microcosms. All of the added carbon sources induced changes in the SRB community structure. Members of the genus Desulfobulbus were present but not active in the original sediment but an increase of the fatty acids 15:1ω6c and 17:1ω6c and FISH results showed an enrichment of these bacteria in microcosms amended with propionate or lactate. The appearance of cy17:0 revealed that bacteria affiliated with the Desulfobacteriaceae were responsible for acetate degradation. Desulfovibrio and Desulfotomaculum spp. were not important populations within the SRB community in microcosms because they did not proliferate on carbon sources usually favored by these organisms. Metabolic, PLFA, and FISH results provided information on the SRB community in a PHC-contaminated freshwater environment, which exhibited stimulation patterns similar to other (e.g. marine) environment

    Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria

    Get PDF
    Isotopic labeling of biomarker molecules is a technique applied to link microbial community structure with activity. Previously, we successfully labeled phospholipid fatty acids (PLFA) of suspended nitrate-reducing bacteria in an aquifer. However, the application of the method to low energy-yielding processes such as sulfate reduction, and extension of the analysis to attached communities remained to be studied. To test the feasibility of the latter application, an anoxic test solution of 500 l of groundwater with addition of 0.5 mM Br− as a conservative tracer, 1.1 mM SO2−4, and 2.0 mM [2-13C]acetate was injected in the transition zone of a petroleum hydrocarbon-contaminated aquifer where sulfate-reducing and methanogenic conditions prevailed. Thousand liters of test solution/groundwater mixture were extracted in a stepwise fashion after 2-46 h incubation. Computed apparent first-order rate coefficients were 0.31 ± 0.04 day−1 for acetate and 0.34 ± 0.05 day−1 for SO2−4 consumption. The δ13C increased from −71.03‰ to +3352.50‰ in CH4 and from −16.15‰ to +32.13‰ in dissolved inorganic carbon (DIC). A mass balance suggested that 43% of the acetate-derived 13C appeared in DIC and 57% appeared in CH4. Thus, acetate oxidation coupled to sulfate reduction and acetoclastic methanogenesis occurred simultaneously. The δ13C of PLFA increased on average by 27‰ in groundwater samples and 4‰ in sediment samples. Hence, both suspended and attached communities actively degraded acetate. The PLFA labeling patterns and fluorescent in situ hybridization (FISH) analyses of sediment and groundwater samples suggested that the main sulfate-reducing bacteria degrading the acetate were Desulfotomaculum acetoxidans and Desulfobacter sp. in groundwater, and D. acetoxidans in sedimen

    Field-scale 13C-labeling of phospholipid fatty acids (PLFA) and dissolved inorganic carbon: tracing acetate assimilation and mineralization in a petroleum hydrocarbon-contaminated aquifer

    Get PDF
    This study was conducted to determine the feasibility of labeling phospholipid-derived fatty acids (PLFA) of an active microbial population with a 13C-labeled organic substrate in the denitrifying zone of a petroleum hydrocarbon-contaminated aquifer during a single-well push-pull test. Anoxic test solution was prepared from 500 l of groundwater with addition of 0.5 mM Br− as a conservative tracer, 0.5 mM NO3−, and 0.25 mM [2-13C]acetate. At 4, 23 and 46 h after injection, 1000 l of test solution/groundwater mixture were sequentially extracted. During injection and extraction phases we measured Br−, NO3− and acetate concentrations, characterized the microbial community structure by PLFA and fluorescent in situ hybridization (FISH) analyses, and determined 13C/12C ratios in dissolved inorganic carbon (DIC) and PLFA. Computed first-order rate coefficients were 0.63±0.08 day−1 for NO3− and 0.70±0.05 day−1 for acetate consumption. Significant 13C incorporation in DIC and PLFA was detected as early as 4 h after injection. At 46 h we measured δ13C values of up to 5614‰ in certain PLFA (especially monounsaturated fatty acids), and up to 59.8‰ in extracted DIC. Profiles of enriched PLFA and FISH analysis suggested the presence of active denitrifiers. Our results demonstrate the applicability of 13C labeling of PLFA and DIC in combination with FISH to link microbial structure and activities at the field scale during a push-pull tes

    High Diversity of Diazotrophs in the Forefield of a Receding Alpine Glacier

    Get PDF
    Forefields of receding glaciers are unique and sensitive environments representing natural chronosequences. In such habitats, microbial nitrogen fixation is of particular interest since the low concentration of bioavailable nitrogen is one of the key limitations for growth of plants and soil microorganisms. Asymbiotic nitrogen fixation in the Damma glacier (Swiss Central Alps) forefield soils was assessed using the acetylene reduction assay. Free-living diazotrophic diversity and population structure were resolved by assembling four NifH sequence libraries for bulk and rhizosphere soils at two soil age classes (8- and 70-year ice-free forefield). A total of 318 NifH sequences were analyzed and grouped into 45 unique phylotypes. Phylogenetic analyses revealed a higher diversity as well as a broader distribution of NifH sequences among phylogenetic clusters than formerly observed in other environments. This illustrates the importance of free-living diazotrophs and their potential contribution to the global nitrogen input in this nutrient-poor environment. NifH diversity in bulk soils was higher than in rhizosphere soils. Moreover, the four libraries displayed low similarity values. This indicated that both soil age and the presence of pioneer plants influence diversification and population structure of free-living diazotroph
    • …
    corecore