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Abstract Forefields of receding glaciers are unique and
sensitive environments representing natural chronosequen-
ces. In such habitats, microbial nitrogen fixation is of
particular interest since the low concentration of bioavail-
able nitrogen is one of the key limitations for growth of
plants and soil microorganisms. Asymbiotic nitrogen
fixation in the Damma glacier (Swiss Central Alps) fore-
field soils was assessed using the acetylene reduction assay.
Free-living diazotrophic diversity and population structure
were resolved by assembling four NifH sequence libraries
for bulk and rhizosphere soils at two soil age classes (8- and
70-year ice-free forefield). A total of 318 NifH sequences
were analyzed and grouped into 45 unique phylotypes.

Phylogenetic analyses revealed a higher diversity as well as
a broader distribution of NifH sequences among phyloge-
netic clusters than formerly observed in other environ-
ments. This illustrates the importance of free-living
diazotrophs and their potential contribution to the global
nitrogen input in this nutrient-poor environment. NifH
diversity in bulk soils was higher than in rhizosphere soils.
Moreover, the four libraries displayed low similarity values.
This indicated that both soil age and the presence of pioneer
plants influence diversification and population structure of
free-living diazotrophs.

Introduction

Most alpine glaciers have been retreating since the end of
the Little Ice Age around 1850 [30, 69]. This retreat
exposed large areas to colonization by microorganisms,
plants, and animals [19, 47, 70, 76, 77]. These glacier
forefields provide unique opportunities to study biological
succession, biogeochemical weathering processes, and the
conversion of glacial till into fertile soils along the
chronosequence (from the glacier to the valley).

The pioneer plants colonizing bare glacier forefields are
crucial for soil formation, as their root exudates and
decaying biomass are the main sources of organic matter
in the developing soils [34, 61]. Moreover, root systems of
pioneer plants contribute to slope stabilization [52]. In
recently deglaciated environments, nutrient shortage is the
main limitation for plant growth [39]. Organic acid anions
(e.g., malate, citrate, oxalate) released in the rhizosphere
can act as ligands, thus increasing the uptake of mineral
nutrients [61]. Soil bacteria are also responsible for the
release of organic acids [45] and chelators (e.g., side-
rophores) [66], facilitating the mineral nutrient acquisition
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by plants. Moreover, some of them can suppress plant
pathogens through their competitive and biocontrol abilities
[36]. Overall, plants receive considerable benefits from soil
microbial communities [33] and in turn stimulate microbial
growth and activity through the exudation of highly
nutritive substances. This phenomenon, known as the
rhizosphere effect, has previously been studied in the
forefields of the Lyman glacier (Washington, USA) [70]
and the Rotmoosferner and Ödenwinkelkees glaciers
(Austria) [26, 81, 82]. In the Damma glacier forefield
(Switzerland), two different scales have been explored.
Edwards et al. [29] observed a decrease of plant influence
on soil bacterial communities along the chronosequence,
while Miniaci et al. [63] showed that this influence
extended at least to 20-cm distance around pioneer plant
patches.

The nitrogen cycle plays a central role in soil ecosystems
and in particular in developing soils. Nitrogen deposition is
low in the Swiss Central Alps, where this study was
conducted. The study location receives a relatively low
atmospheric nitrogen input of less than 10 to 15 kg nitrogen
per hectare and year, in contrast to many sites in the Swiss
plateau receiving 25 kg to more than 40 kg per hectare and
year, as given by the Swiss Federal Office for the
Environment (www.bafu.admin.ch). The study by Korner
et al. [53] (2,470 m, Swiss Central Alps), as well as a
preliminary study on the Damma glacier [10] suggested
that the growth of microbial communities in alpine
grassland was limited by mineral nitrogen availability and
carbon supply. Under nitrogen-limited conditions, microbial
nitrogen fixation represents a selective advantage for
nitrogen-fixing bacteria (diazotrophs) and, indirectly, for
the interacting pioneer plants. Symbiotic nitrogen fixation
has been extensively studied particularly in agricultural soil
[44]. However, only few studies have focused on nitrogen
fixation in glacier forefields. For example, Kohls et al. [50]
studied the impact of symbiotic nitrogen fixation on plant
succession and soil formation and Jacot et al. [42] showed
that symbiotic nitrogen fixation provides 70% to 95% of
the nitrogen requirements of legumes in the Swiss Alps.
Even less is known about the role and the phylogeny of
free-living diazotrophs in such environments. This group
may be particularly important in the early stages of the
chronosequence, as only few pioneer plant species form
symbioses with nitrogen-fixing bacteria [43]. These plants
may take advantage of indirect interactions with free-living
diazotrophs.

Nitrogen fixation is a complex and energy-intensive
process, which requires the interaction of several gene
products including the nitrogenase structural proteins NifD,
NifK, and NifH. The nifH gene, which encodes the iron
protein of the nitrogenase complex (nitrogenase reductase),
represents a valuable marker gene for the study of

diazotrophs. The amino acid sequence of the NifH protein
is highly conserved [16], and an extensive database of
sequences retrieved from multiple environments is available
[88]. Comparison of 16S rRNA and nifH phylogenies gives
no strong evidence for lateral nifH gene transfer [88]
although some anomalies were observed [59, 62]. For
example, Dedysh et al. [25] mentioned that diverse micro-
organisms may have acquired their nitrogen fixation
capability from lateral transfer of an α-proteobacterial
nifH gene.

The nifH phylogeny was classified into four clusters
(clusters I–IV) [20]. This phylogenetic classification, based
on amino acid sequences, has proven to be reasonable [12,
48, 55] and was updated and rearranged by Zehr et al. [88].
The latter study on nifH phylogeny constitutes a good basis
for further phylogenetic studies of diverse environments.

Numerous previous studies have used the nifH gene to
assess diazotroph diversity in soil (e.g., [41, 85, 87]),
including arctic soil [27], but there are no previous studies
in alpine glacier forefields.

The aim of this study was to verify that asymbiotic
nitrogen fixation was effectively taking place in the Damma
glacier forefield and to determine the NifH diversity and
distribution, providing for the first time a survey on free-
living diazotrophic diversity in high alpine soils. We further
hypothesized that due to their unique ability to grow in
nitrogen-limited environments in presence of a suitable
energy source, they would react strongly to the key factors
influencing soil parameters in the forefield environment:
soil age and plant influence. To test this hypothesis, we
sampled bulk soil and rhizosphere soil of three prominent
pioneer plants from two successional stages. We retrieved
nifH sequence information from glacier forefield soils using
a cloning and sequencing approach and estimated NifH
diversity by applying rarefaction analysis. The glacier-
specific NifH sequences were aligned to publicly available
sequences and subjected to phylogenetic analysis to
determine their association with the nifH clusters as given
by Zehr et al. [88].

Materials and Methods

Damma Glacier Forefield

The study site is the forefield of the Damma glacier (8° 27′
N, 46° 38′ E) near Göscheneralp (Central Switzerland) at an
altitude of approximately 2,000 m above mean sea level.
The glacier has been receding since 1850, apart from an
intermittent advancement between 1972 and 1992
(corresponding to the intermediate moraine; Fig. 1). Since
the beginning of systematic measurement in 1921, the
glacier has been receding at a mean rate of 10 m year−1
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(http://glaciology.ethz.ch/swiss-glaciers/, [3–6]). The expo-
sition of the forefield is SW to NE with a slope of 25%. The
site is characterized by a mean annual air temperature of
between 0°C and 5°C and a mean annual precipitation of
2,400 mm [79]. The parent rock of the forefield is granite.

Sampling

Sampling took place during two consecutive summers.
Samples from 2004 were collected for acetylene reduction
assay and phylogenetic analysis and samples from 2005
were used for soil characterization and phylogenetic
analysis. Two sampling sites were selected before and after
the intermediate moraine according to the two soil age
classes defined by Hämmerli et al. [38]. The two sites
corresponded to 8- and 70-year ice-free forefield (year of
deglaciation 1997 and 1935) and were situated at 60 and
350 m from the glacier tongue, respectively. Soil collection
sites were localized using a Geographic Information System
(ArcMap™) and Global Positioning System (GPS). In total,
14 bulk soil samples and 35 rhizosphere soil samples from
three pioneer plant species (Leucanthemopsis alpina, Poa
alpina, and Agrostis sp.) were collected (Fig. 1). Plants
were selected to be solitary or at least to be the dominant
plant species within the sampled vegetation patches.

Bulk soil samples were collected with a spatula to a
depth of approximately 5 cm and transported in plastic bags
on ice to the laboratory within 8 h. Pioneer plants, including
root systems, were collected with a spade and then

vigorously shaken to remove nonadherent soil. All three
plants had extensive root systems. The grasses develop a
very dense mass of long and thin roots, while the less
compact root system of L. alpina is composed of thicker
roots. In the laboratory, rhizosphere soil adhering to the
roots was then collected and used for further analysis.

Chemical and Physical Characterization of Soils

Soils ranged from coarse sand (8-year ice-free forefield) to
well-defined layered soils (70-year ice-free forefield).
Nitrate was analyzed using a Dionex DX-320 ion chro-
matograph (Dionex, Sunnyvale, CA, USA) in 0.01-M
CaCl2 soil extracts [63]. Soil pH was measured in the same
extracts. Total carbon (Ctot) and nitrogen (Ntot) contents
were determined by combustion of 1 g ground soil at
1,200°C, using a Leco 2000 CNS device elementary
analyzer (Leco, Krefeld, Germany) following manufac-
turer’s instructions. Available ammonium was determined
photometrically after 2-M KCl soil extraction [65]. Soil
samples were dried and weighed to determine soil water
content. Effects of soil age and plant presence on soil
properties as well as the interaction soil age × plant
presence were examined through two-way analysis of
variance (ANOVA) using the JMP software [75].

Acetylene Reduction Assay

Potential asymbiotic nitrogenase activity was estimated
using the acetylene reduction assay (ARA) [14]. Briefly,
field-moist bulk soil and rhizosphere soil (roots, stem, and
leaves included) samples were weighed and placed in glass
bottles sealed with gas-tight neoprene septum lids (Supelco,
Bellefonte, PA, USA) to facilitate the sampling of gas. The
headspace was flushed for 15 min with N2, before the
addition of 10% (v/v) acetylene (C2H2). The bottles were
incubated in a climate chamber at 15°C with 14 h of
artificial light per day. Ethylene (C2H4) production was
measured after 5 min, 24, 48, and 54 h following acetylene
addition, by injecting 0.5-ml headspace into a 8000 GC gas
chromatograph (Carlo Erba Instruments, Milan, Italy)
equipped with a flame ionization detector and a Hayesep
N capillary column (BGB Analytik, Auwil, Switzerland) at
75°C. The rate of ethylene production was derived from the
slope of the linear regression of ethylene concentration
versus time. Effects of soil age and plant presence on the
acetylene reduction activity were tested as described above.

Nucleic Acid Extraction and PCR Amplification

DNAwas extracted from 0.7 g of (fresh weight) soil using a
bead-beating method as described previously [68]. The
extracted nucleic acids were dissolved in 50 μl TE buffer
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Figure 1 Cumulative recession of the Damma glacier from 1922 to
2005. Arrows indicate the two types of soil age sampled in this study.
Adapted and expanded from Edwards et al. [29]
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(10 mM Tris–HCl (pH 8), 1 mM ethylene diamine
tetraacetic acid). DNA concentration in extracts was
determined using a Quant-iT™ PicoGreen dsDNA Kit
(Invitrogen) and a Synergy plate reader (BIO TEK,
Vinooski, USA).

For amplification of nifH genes, a nested polymerase
chain reaction (PCR) approach was performed according to
Bürgmann et al. [15, 85]. The initial PCR was performed
with the forward primer nifH-forA (5′-GCIWTITAYGG
NAARGGNGG-3′) and the reverse primer nifH-rev (5′-
GCRTAIABNGCCATCATYTC-3′), followed by a semi-
nested PCR reaction using the forward primer nifH-forB
(5′-GGITGYGAYCCNAAVGCNGA-3′) and the same re-
verse primer.

Cloning and Sequencing

Clones libraries of amplified nifH fragments were created
for four samples each of both 8-year soils and the 70-year
rhizosphere soil, as well as seven samples of 70-year bulk
soil. The amplicons of the nested PCR reactions were
loaded on a 1% agarose gel. DNA bands of 370 bp were
excised and purified with Qiagen gel extraction kit (Qiagen
AG, Hilden, Germany). The products were cloned using a
TOPO TA cloning kit (Invitrogen) according to the
manufacturer’s instructions. Clones were selected randomly
and sent to GATC Biotech AG (Konstanz, Germany) for
sequencing.

Sequence Data and Phylogenetic Analysis

Sequence data processing was carried out using the
Sequencher™ (Gene Codes Corporation, Ann Arbor,
USA) software package and closest relatives were deter-
mined with a Basic Local Alignment Search Tool search [1]
at National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/). Translated NifH amino acid
sequences were organized in separate libraries for each
type of soil. As this study focused on the impact of plant
presence and not on plant species, sequences originating
from rhizosphere soil from the three different pioneer plant
species were combined into a single 8-year and 70-year
rhizosphere soil library, respectively. Three hundred eigh-
teen Damma glacier NifH sequences were merged with
3,324 sequences retrieved from the Pfam Fer4_NifH
database (2005; http://www.sanger.ac.uk) [2], and 4,298
sequences were kindly provided by B. D. Jenkins (Depart-
ment of Cell and Molecular Biology, University of Rhode
Island, Kingston). The two latter groups of sequences might
contain overlaps. Sequence alignments, similarity matrix
calculation, and tree construction were performed using the
ARB software package [58]. A phylogenetic inference tree
was calculated at the protein level using the neighbor-

joining algorithm [74] and a Kimura correction [49],
considering 107 amino acid positions. Tree topology
confirmation was achieved using the PHYLIP Protein-
Parsimony package (version 3.6a3). Highly variable regions
within the sequences were excluded using a 30% amino
acid frequency filter. The nifH phylogeny defined by Zehr
et al. [88] was used as backbone for tree construction.

Diversity Measurements and Statistical Analyses

Amino acid sequences with at least 97% sequence
similarity were grouped in unique NifH phylotypes,
according to sequence similarity data retrieved from ARB.
Rarefaction curves were constructed using the EstimateS
software package (version 8.0) [21] and total NifH
phylotype richness of the four libraries was estimated using
Chao1 [17] as a nonparametric indicator. EstimateS
generated 50 runs (individual randomization) for each
rarefaction curve. These replicates were used to test the
effect of soil age and plant presence on NifH phylotype
number using a two-way ANOVA, as well as Student and
Tukey HSD tests using the JMP software [75]. Diversity
and evenness are given by the Shannon–Wiener diversity
index, H 0 ¼ �P

pið Þ ln pið Þ, where pi is the proportion of
ith phylotype, and the Shannon evenness, EH ¼ H 0=ln S,
where S is the total number of phylotypes. Similarity
between libraries was evaluated using the Sorensen simi-
larity index Cs ¼ 2j=aþ b, where j is the number of
common species in two libraries and a and b are the
numbers of phylotypes of both libraries.

Nucleotide Sequence Accession Numbers

The nifH gene sequences retrieved from the Damma glacier
forefield were deposited in the GenBank database under
Accession No. EF988336–988349, EF988351–988362,
EF988364–988377, EF988379–988420, EF988422–
988428, EF988430–988549, EF988552–988615,
EF988617, EF988619–988622, and EU305256–EU305295.

Results

Soil Biogeochemistry

The analysis of selected soil biogeochemical characteristics
revealed significant differences for nitrate, ammonium,
water, and DNA content between the two soil age classes,
as well as between bulk soil and rhizosphere soil (Table 1).
Nitrate concentration decreased significantly with soil age
and to a lesser extent in the presence of plants. Water
content was slightly higher in the 70-year ice-free forefield
and increased significantly in presence of plants. DNA
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content increased significantly with soil age and was lower
in bulk soil than in rhizosphere soil: 60-fold and 700-fold
lower in the 8-year and 70-year ice-free soils, respectively.
Nevertheless, both effects cannot be differentiated as their
interaction was highly significant. Similarly, ammonium was
significantly affected by both factors but their respective
contribution cannot be distinguished. The pH was not
significantly affected by the presence of plant or by soil
age. The impact of plant presence on total carbon and total
nitrogen contents was significant. However, Ctot and Ntot

values were out of the validity range of the CNS elementary
analyzer and therefore have to be interpreted with caution.

Nitrogenase Activity

Acetylene reduction rates were low but above the detection
limit in most samples, with a few outliers showing higher
rates (Table 1). ARA values increased significantly in
presence of plants (p<0.1) despite high standard deviations

for both rhizosphere soils. This variability seemed not to be
related to the three different plant species but to plant
individuals (data not shown).

Rarefaction Analysis

The 318 aligned NifH amino acid sequences were grouped
into 45 unique NifH phylotypes at 97% sequence similarity
level. The lowest number of sequences (n=74) in the 8-year
bulk soil library was used as a threshold for comparison of
phylotype richness according to rarefaction analysis of the
four libraries. Richness at n=74 was higher in bulk soil
than in rhizosphere soil regardless of soil age (Fig. 2). The
ANOVA on the 50 EstimateS replicates (n=74) showed that
both plant presence (p<0.0001) and soil age (p=0.077) had
significant and marginally significant effects, respectively,
on NifH phylotype number. The interaction of these two
factors was significant (p=0.0007). According to Student
and Tukey HSD tests, 8-year and 70-year rhizosphere soils
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Table 1 Biogeochemical properties and nitrogenase activity for the four types of soil

Parameters [units] 8-year ice free 70-year ice free ANOVA

Bulk soil Rhizosphere soil Bulk soil Rhizosphere soil p value

Soil age Plant presence Factors
interaction

Ntot [μg N/g dry soil] 4.7±3.4 38.37±9.3 10.45±8.84 529.4±524.22 0.2459 0.1997 0.2563
Nitrate [μg N/g dry soil] 0.04±0.03 0.022±0.012 0.02±0.007 0.015±0.003 0.0594a 0.0961a 0.3309
Ammonium [μg N/g dry soil] 0.58±0.05 0.55±0.01 0.55±0.03 0.75±0.29 0.0724a 0.0905a 0.0246b

Ctot [μg C/g dry soil] 155.1±203.6 668.2±50.1 233.7±179.0 10,016.83±10,800.8 0.1248 0.0958a 0.1307
DNA [ng DNA/g dry soil] 2.6±0.4 156.4±46.4 5.9±3.2 4,338.2±826.0 <0.0001c <0.0001c <0.0001c

Water content [%] 5.3±3.8 16.2±2.6 7±4.6 20.3±5.2 0.0693a <0.0001c 0.4351
pH 4.7±0.2 4.9±0.3 4.7±0.1 4.8±0.5 0.5980 0.1249 0.5699
Nitrogenase activity
[nmol C2H4/day

.g dry material]
0.054±0.043 0.265±0.525 0.098±0.095 1.948±2.529 0.1275 0.0715a 0.1472

a Significant at 0.1 level
b Significant at 0.05 level
c Significant at 0.01 level
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were similar, while 8-year and 70-year bulk soils were
significantly different.

The Chao1 estimates of total NifH phylotype richness
values were in the same range as the observed number of
phylotypes and confirmed the trend found for richness at
n=74 (Table 2). Rhizosphere soil showed higher Shannon–
Wiener evenness than bulk soil, while diversity values
ranged between 2.16 and 2.46, with lower values in bulk
soil due to the lower evenness (Table 2).

Phylogenetic Characterization

All NifH amino acid sequences derived from the glacier
forefield were assigned to the NifH phylogenetic clusters
defined by Zehr et al. [88]. Diazotrophs present in the
Damma glacier forefield were highly diverse with respect
to phylogeny (Figs. 3 and 4). All previously described
NifH clusters [20] were represented except the Archaea
(cluster IV) which are not targeted by the primers used in
this study.

The four libraries varied greatly in their phylotype
composition as illustrated by Fig. 3 and the low Sorensen
similarity indices (Table 3). Briefly, the similarities between
libraries from different age classes were intermediate, while
similarity between bulk soil and rhizosphere soil in 8-year
ice-free forefield was higher, and similarity between bulk
soil and rhizosphere soil in the 70-year ice-free forefield
was lower (Table 3). Shannon evenness indices were
smaller for the two bulk soil libraries than for rhizosphere
soil (Table 2). In both case, more than half of the NifH
sequences belonged to few phylotypes that were almost
exclusive to these two libraries.

The majority of the NifH sequences (80%) were
affiliated with cluster I. Within this cluster, most of them
(35%) were related to subcluster IK (α-, β-, γ-Proteobacteria;
57%, 15%, and 28%, respectively). This subcluster was most
abundant in the rhizosphere soils (59% and 25% of sequences
in 8- and 70-year soil, respectively). A large number of these

NifH sequences were related to Methylococcus capsulatus
(22 sequences, 97% amino acid sequence similarity level)
and Methylocystis sp. (30 sequences, 99% amino acid
sequence similarity level). Almost all (96%) of these 52
NifH sequences were found in rhizosphere soils and two
thirds of them were retrieved from the 8-year soil sam-
ples. Thirteen NifH sequences were related to potentially
symbiotic nitrogen-fixing bacteria Ideonella sp. (>97%
similarity). Subcluster IA (δ-Proteobacteria) was the
second most important subcluster within cluster I (27%).
These sequences occurred predominantly in bulk soil and
were related to Geobacter uraniumreducens, Geobacter
bemidjensis, or Geobacter lovleyi at more than 96%.
Subcluster IB, corresponding to Cyanobacteria, recovered
19% of the NifH sequences in cluster I. These sequences
occurred with high abundance in both rhizosphere lib-
raries, and this was the most abundant group in 70-year
rhizosphere soil. In this subcluster, nine sequences were
closely related to Nostoc sp. (100% similarity), one to
Nostoc muscorum (96% similarity), four to Aphanizomenon
sp. (99% similarity), six to Scytonema sp. (98% similarity),
five to Pseudanabaena sp. (98% similarity), and two to
Anabaena cylindrica (100% similarity). Additionally, 22
sequences were weakly affiliated with Oscillatoria sp. (93%
similarity). Further sequences were grouped within subclus-
ter IE (Firmicutes) which occurred with high abundance in
the 8-year bulk soil library (31%, related to Paenibacillus
durus with 94% similarity), IP (β-Proteobacteria), and
uncultured subclusters (i.e., IC and IG).

Cluster III was the second prominent cluster with 23.6%
of all NifH sequences. Within this cluster, two thirds of the
sequences did not group into any known subcluster and
were classified in two new subclusters Damma1 and
Damma2 (Fig. 4.). The remaining sequences clustered
within the subclusters IIID (Firmicutes), IIIC (Archaea),
and IIIQ (uncultured). Cluster II contained only a few
sequences (1.6%) belonging to subcluster IIC (α-, γ-
Proteobacteria, Spirochaetes) and IIE (Firmicutes).

Table 2 NifH phylotype rich-
ness and diversity estimators in
the four NifH libraries

n Number of NifH sequences
analyzed in respective NifH
library
a Number of different (<97%
sequence similarity) NifH
sequences
b Number of phylotypes extrap-
olated using the richness esti-
mator Chao1

8-year ice free 70-year ice free

Bulk soil
(n=74)

Rhizosphere soil
(n=90)

Bulk soil
(n=77)

Rhizosphere soil
(n=77)

Number of phylotype represented
by NifH sequencesa

20 19 21 18

Number of NifH phylotypes
extrapolateda, b

26 24 31 19

95% confidence intervala, b 22–47 20–47 23–64 18–28
Shannon–Wiener diversity (H’) 2.22 2.46 2.16 2.32
Shannon evenness (EH) 0.74 0.84 0.71 0.80
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Discussion

Nitrogenase Activity and Soil Biogeochemistry

Acetylene reduction rate measurements indicated that
asymbiotic nitrogen fixation occurs in the Damma glacier
forefield soils. The higher activity in rhizosphere soils is in
agreement with previous observations on other enzyme
activities [63, 81] and may be related to the elevation of
substrate and nutrient concentration through the exudation
of carbon-rich substances by the roots, as well as to low
abiotic stress (e.g., reduced temperature and moisture
fluctuation) due to vegetation cover [63, 81].

The analysis of selected biogeochemical parameters
confirmed that the Damma glacier forefield is a heteroge-
nous environment, significantly affected by soil age and the
presence of pioneer plants, as discussed previously [29, 77].
Interestingly, nitrate decreased significantly along the
chronosequence, while ammonium concentrations seemed
to be stable in bulk soil and to increase in rhizosphere soil.

The nitrate pool is probably depleted due to both the
immobilization by plants and microorganisms and the
absence of nitrification. In fact, Verhagen et al. [83] and
Bengtson and Bengtsson [8] reported that nitrifying bacteria
are outcompeted by heterotrophic bacteria in ammonium-
poor environments. In contrast, microbial nitrogen fixation
and ammonification may explain the sustainability of the
ammonium pool.

NifH Diversity

Comparative studies on soil NifH diversity have to be
performed with caution, as different studies have used
different primer pairs for the nifH gene amplification.
Nevertheless, NifH diversity (H′) values in Damma glacier
forefield soils were surprisingly high compared to diversity
found in other studies [27, 72, 73, 85]. The methods used in
these studies, restriction fragment length polymorphism
(RFLP) and terminal restriction fragment length poly-
morphism (T-RFLP), may bias diversity measurements.
RFLP has a low genotyping resolution, while T-RFLP
may lead to an overestimation of the diversity due to in-
complete restriction digestion [67]. The cloning–sequencing
analysis used here has a high phylogenetic resolution but
is of course also subject to potential PCR bias. NifH
diversity values presented in this study were comparable
to those found by Izquierdo and Nusslein [41] who used
a similar analytical approach. The Shannon–Wiener
diversity index found in this study were intermediate to
those found for arctic tundra soils (H′=1.97) and tropical
forest (H′=2.41)[41]. Thus, despite extreme nutritional
and climatic conditions, diazotrophs in the glacier fore-
field establish with similar diversity as those found in more
favorable environments.

Previous work at the Damma glacier forefield suggested
a higher bacterial diversity in bulk soil compared to
rhizosphere soil [29]. Our results were in agreement with
this observation, showing a significantly higher NifH
phylotype richness in bulk soil. It may result from a higher
diversity of the microhabitat [35, 72], as well as more
fluctuating growth conditions [82]. Nevertheless, the
competition for carbon and nitrogen resources in the
nutrient-poor glacier forefield bulk soil may lead to strong
selection pressure on the bacterial community. The lower
Shannon evenness value for both bulk soil libraries
supports this assumption.

Additionally, the Chao 1 estimator predicted the highest
diversity in 70-year bulk soil. One possible explanation
may be the intermediate disturbance hypothesis [23],
stating that environments with intermediate rate of distur-
bance display highest diversity. In the present study, 70-
year bulk soil may correspond to this intermediary state
as it undergoes less abiotic disturbance than 8-year bulk
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soil (higher carbon and nitrogen availability, physical
protection due to the dense surrounding vegetation) but
more than rhizosphere soil where conditions are more
favorable and stable (high nutrient availability, less
moisture and temperature fluctuation) [82]. Similar find-
ings are reported for a nutrient-rich agricultural soil by
Marilley and Aragno [60] who showed that low rates of
disturbance associated with rhizosphere soils (e.g., higher
substrate availability) lead to communities which are
dominated by a few species.

Only few studies addressed the direct comparison
between nitrogenase activity and diazotrophic diversity.
Deslippes et al. [28] observed a poor relationship between
nifH diversity and nitrogenase activity in natural environ-
ment. In a laboratory pot experiment, Bürgmann et al. [13]
described more diverse active diazotrophic populations
related to higher nitrogen fixation rates. Nevertheless,

active NifH diversity and nitrogenase activity in natural
environment have never been related. Methods used in the
present study do not allow the direct comparison of activity
and active diversity.

Geobacter uraniumreducens, Geobacter bemidjensis,
Geobacter lovleyi

Closest cultivated relativesLibraries

Desulfitobacterium hafniense

Anabeana cylindrica, Aphanizomenon sp., Nostoc
muscorum, Nostoc sp., Scytonema sp.,
Pseudanabeana sp., Oscillatorioa sp.

Dechloromonas aromatica

Azotobacter vinelandii

Paenibacillus durus

Ideonella sp.,Methylococcus capsulatus,
Methylococcus sp., Methylocystis sp., Methylocystis
minimus, Azospirillum lipoferum, Azospirillum oryzae,
Bradyrhizobium elkanii

Heliobacterium sp.

Methanosarcina mazei

Clostridium pasteurianum

Outgroup

Damma1

Damma2

3N

3L

3D

2A
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Figure 4 Phylogenetic characterization of NifH sequences detected in
the Damma glacier forefield soils. Presence, in respective subclusters,
is given by the absolute number of NifH sequences related to the four
libraries. The dendrogram is based on 1,713 aligned amino acid
sequences deduced from DNA sequences and was calculated using the

neighbor-joining algorithm. Thirty-seven sequences affiliated with
Cluster IV (Archea) were used as outgroup. Species in bold type
showed more than 95% similarity (amino acid level) with clones
retrieved from the glacier forefield

Table 3 Sorensen similarity (Cs) matrix for the four types of soil by
using NifH phylotypes identified in the NifH libraries

Type of soil 8-year ice free 70-year ice free

Bulk
soil

Rhizosphere
soil

Bulk
soil

Rhizosphere
soil

8-year
ice free

Bulk soil 1.00
Rhizosphere soil 0.51 1.00

70-year
ice free

Bulk soil 0.39 0.40 1.00
Rhizosphere soil 0.32 0.43 0.26 1.00

Relative frequencies of phylotypes per library are not taken into account
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NifH Phylogenetic Distribution

Clone distribution among phylogenetic clusters and Sor-
ensen’s index revealed a low degree of overlap between
NifH libraries of the different soils. This indicated a high
heterogeneity in the Damma glacier forefield environment.
Furthermore, it implied that soil age and presence of
pioneer plants may have promoted strong shifts in the
community structure.

The total of 14 NifH subclusters observed in the four
libraries represents a much broader distribution of NifH
sequences as formerly described in forest soil [73, 85] and
cultivated soil [72], where the entire NifH diversity was
related to Proteobacteria. The diazotrophic community
found in the Damma glacier, especially in 8-year bulk soil,
was much more comparable to that found in arctic soil by
Deslippe and Egger [27], who likewise found a high
number of Firmicute-related microorganisms (subcluster
IE) in an arctic glacial lowland soil. Interestingly, eight
phylogenetic subclusters, not depicted as soil subclusters by
Zehr et al. [88], and two new subclusters of uncultivated
diazotrophs were found in Damma glacier forefield soils.
The latter two subclusters represented 12% of total NifH
sequences and were represented in four and three of the
four libraries, respectively (Fig. 3). All these observations
highlight the fact that asymbiotic NifH diversity has been
mainly studied in the marine environment and knowledge
for soils, especially in extreme environments, is limited.

Sequences affiliated with two methanotrophic bacteria,
M. capsulatus and Methylocystis sp., represented 16.4% of
the total diversity, and two thirds of them were found in the
young forefield. Various upland soil methanotrophs have a
high affinity for CH4 and are able to oxidize atmospheric
CH4 even at low concentrations [7, 51]. That may explain a
high competitiveness in the studied carbon-poor environ-
ment. Alternatively, plant exudates may be fermented to
methane in anaerobic microniches, which in turn may
stimulate the growth of methanotrophs in the rhizosphere.
This hypothesis is supported by the phylogenetic data
showing the almost exclusive presence of methanotrophs
in the more humid and carbon-rich rhizosphere soils.
However, as mentioned by Dedysh et al. [25] the
affiliation of the NifH sequence from the γ-Proteobacteria
M. capsulatus with α-proteobacterial sequences may result
from nifH gene lateral transfer. Therefore, it cannot be
entirely ruled out that these sequences actually originated
from other closely related α-Proteobacteria.

Twenty-one percent of all NifH sequences were grouped
in subcluster IA and were related to G. uraniumreducens,
G. bemidjensis, and G. lovleyi. Similar sequences have
already been retrieved from bulk and rhizosphere soil
samples [37, 88]. Geobacter species are able to gain energy
from Fe(III) reduction using organic acids or acetate as

electron donors [57] Representatives of the Geobacteraceae
are also able to use oxygen as alternative electron acceptor,
giving them competitive advantages in oxic–anoxic bound-
aries [56]. Glacier forefield soils typically undergo periods
of inundation after snow melt and heavy rainfall, followed
by periods of drought due to high light intensity and strong
winds. These frequent fluctuations between aerobic and
anaerobic conditions may favor the spreading of Geobacter
species.

Cyanobacterial NifH sequences were also well repre-
sented in the glacier forefield soils. Cyanobacteria have
already been described as an important source of nitrogen
input in arctic [18, 54] and alpine [31] environments.
Furthermore, they are known as primary colonizers of
recently deglaciated soil [24, 46]. Nevertheless, while
Cyanobacteria are well studied in aquatic and symbiotic
systems [9, 71], very little is known about cyanobacteria
under the soil surface [84]. The cyanobacterial community
found in the glacier forefield was very similar to that found
in mature biological soil crusts (BSCs) from the Colorado
plateau and Chihuahuan desert [86], but crust formation
was not evident at the sampling sites. Cyanobacteria are
known to form symbioses with mosses (e.g., Azolla,
Hepatica) [78], which are frequently associated with
vegetation patches in the glacier forefield. Cross contami-
nation with traces of moss biomass or BSCs cannot be ruled
out but seems unlikely especially for rhizosphere samples.
Another explanation may be the high metabolic versatility
of Cyanobacteria. Half of cultivated Cyanobacteria are
facultative heterotrophs, with light remaining the energy
source [80], or chemoorganotrophs [11]. Nine of our
cyanobacterial sequences were related to Nostoc sp., a
species able to perform aerobic respiration [80]. Gantar et
al. [32] showed that Nostoc sp. and Anabaena sp. were
able to form both loose and tight association with the roots
of wheat. Half of the NifH sequences clustering with
Cyanobacteria were closely related (99%) to NifH se-
quences retrieved from the rhizosphere of a transgenic
tomato plant [40] that were distantly affiliated with facul-
tative fermentative Oscillatoria sp. [64]. Fermentative
conditions may occur locally in the rhizosphere of pioneer
plants, where 89% of these sequences were found.
Therefore, one can hypothesize that Cyanobacteria may
also be found living heterotrophically in close but asym-
biotic association with pioneer plants and that their
abundance is directly or indirectly linked to the concen-
tration and the composition of root exudates.

Conclusion

This study for the first time demonstrated activity and
diversity of nitrogen-fixing bacteria in an alpine glacier
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forefield. The considerable diversity as well as the broad
distribution of NifH sequences retrieved from the glacier
forefield chronosequence were unexpected and indicated
that in its entirety this environment supports one of the
most diverse diazotrophic communities studied so far. The
association of methanotrophic and cyanobacterial diazo-
trophs with rhizosphere soils and Geobacter relatives with
bulk soil indicated that interesting and diverse ecological
strategies were associated with different habitats, warrant-
ing further study. This study demonstrated that, in accor-
dance with our hypothesis, the presence of pioneer plants
reduced the diversity of free-living diazotrophs and directly
or indirectly influenced their community structure. Soil age
was a less important factor, affecting significantly free-
living diazotrophs only in bulk soil.
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