research

Sulfate-reducing bacterial community response to carbon source amendments in contaminated aquifer microcosms

Abstract

Microbial sulfate reduction is an important metabolic activity in many reduced habitats. However, little is known about the sulfate-reducing communities inhabiting petroleum hydrocarbon (PHC)-contaminated freshwater aquifer sediments. The purpose of this study was to identify the groups of sulfate-reducing bacteria (SRB) selectively stimulated when sediment from a PHC-contaminated freshwater aquifer was incubated in sulfate-reducing aquifer microcosms that were amended with specific carbon sources (acetate, butyrate, propionate, lactate, and citrate). After 2 months of incubation, the SRB community was characterized using phospholipid fatty acid (PLFA) analysis combined with multivariate statistics as well as fluorescence in situ hybridization (FISH). Molybdate was used to specifically inhibit SRB in separate microcosms to investigate the contribution of non-SRB to carbon source degradation. Results indicated that sulfate reduction in the original sediment was an important process but was limited by the availability of sulfate. Substantially lower amounts of acetate and butyrate were degraded in molybdate treatments as compared to treatments without molybdate, suggesting that SRB were the major bacterial group responsible for carbon source turnover in microcosms. All of the added carbon sources induced changes in the SRB community structure. Members of the genus Desulfobulbus were present but not active in the original sediment but an increase of the fatty acids 15:1ω6c and 17:1ω6c and FISH results showed an enrichment of these bacteria in microcosms amended with propionate or lactate. The appearance of cy17:0 revealed that bacteria affiliated with the Desulfobacteriaceae were responsible for acetate degradation. Desulfovibrio and Desulfotomaculum spp. were not important populations within the SRB community in microcosms because they did not proliferate on carbon sources usually favored by these organisms. Metabolic, PLFA, and FISH results provided information on the SRB community in a PHC-contaminated freshwater environment, which exhibited stimulation patterns similar to other (e.g. marine) environment

    Similar works