2 research outputs found

    The Transcriptome of Streptococcus pneumoniae Induced by Local and Global Changes in Supercoiling

    Get PDF
    The bacterial chromosome is compacted in a manner optimal for DNA transactions to occur. The degree of compaction results from the level of DNA-supercoiling and the presence of nucleoid-binding proteins. DNA-supercoiling is homeostatically maintained by the opposing activities of relaxing DNA topoisomerases and negative supercoil-inducing DNA gyrase. DNA-supercoiling acts as a general cis regulator of transcription, which can be superimposed upon other types of more specific trans regulatory mechanism. Transcriptomic studies on the human pathogen Streptococcus pneumoniae, which has a relatively small genome (∼2 Mb) and few nucleoid-binding proteins, have been performed under conditions of local and global changes in supercoiling. The response to local changes induced by fluoroquinolone antibiotics, which target DNA gyrase subunit A and/or topoisomerase IV, involves an increase in oxygen radicals which reduces cell viability, while the induction of global supercoiling changes by novobiocin (a DNA gyrase subunit B inhibitor), or by seconeolitsine (a topoisomerase I inhibitor), has revealed the existence of topological domains that specifically respond to such changes. The control of DNA-supercoiling in S. pneumoniae occurs mainly via the regulation of topoisomerase gene transcription: relaxation triggers the up-regulation of gyrase and the down-regulation of topoisomerases I and IV, while hypernegative supercoiling down-regulates the expression of topoisomerase I. Relaxation affects 13% of the genome, with the majority of the genes affected located in 15 domains. Hypernegative supercoiling affects 10% of the genome, with one quarter of the genes affected located in 12 domains. However, all the above domains overlap, suggesting that the chromosome is organized into topological domains with fixed locations. Based on its response to relaxation, the pneumococcal chromosome can be said to be organized into five types of domain: up-regulated, down-regulated, position-conserved non-regulated, position-variable non-regulated, and AT-rich. The AT content is higher in the up-regulated than in the down-regulated domains. Genes within the different domains share structural and functional characteristics. It would seem that a topology-driven selection pressure has defined the chromosomal location of the metabolism, virulence and competence genes, which suggests the existence of topological rules that aim to improve bacterial fitness

    Fluoroquinolone-Resistant Pneumococci: Dynamics of Serotypes and Clones in Spain in 2012 Compared with Those from 2002 and 2006

    No full text
    In Spain, rates of ciprofloxacin resistance in pneumococci were low during the last decade (2.6% in 2002 and 2.3% in 2006). In 2012, the rate remained at 2.3%, equivalent to 83 of 3,621 isolates. Of the 83 resistant isolates, 15 showed a low level (MIC of 4 to 8 μg/ml) and 68 a high level (MIC of 16 to 128 μg/ml) of ciprofloxacin resistance. Thirteen low-level-resistant isolates had single changes in ParC, one had a single ParE change, and one did not present any mutations. High-level-resistant isolates had GyrA changes plus additional ParC and/or ParE changes: 51, 15, and 2 isolates had 2, 3, or 4 mutations, respectively. Although 24 different serotypes were observed, 6 serotypes accounted for 51.8% of ciprofloxacin-resistant isolates: 8 (14.5%), 19A (10.8%), 11A (7.2%), 23A (7.2%), 15A (6.0%), and 6B (6.0%). A decrease in pneumococcal 7-valent conjugate vaccine (PCV7) serotypes was observed from 2006 (35.7%) to 2012 (16.9%), especially of serotype 14 (from 16.3% to 2.4%; P < 0.001). In comparison with findings in 2006, multidrug resistance was greater in 2012 (P = 0.296), mainly due to the increased presence and/or emergence of clonal complexes associated with non-PCV7 serotypes: CC63 expressing serotypes 8, 15A, and 19A; CC320 (with serotype 19A); and CC42 (with serotype 23A). Although rates of ciprofloxacin resistance remained low and stable throughout the last decade, changes in serotype and genotype distributions were observed in 2012, notably the expansion of a preexisting multidrug-resistant clone, CC63, and the emergence of the CC156 clone expressing serotype 11A
    corecore