3,480 research outputs found

    Fast oxidation of the neonicotinoid pesticides listed in the EU Decision 2018/840 from aqueous solutions

    Full text link
    Neonicotinoid pesticides family is nowadays identified as the most important type of insecticides in the world. Their consequent widespread occurrence in the environment represents not only a well-known risk for bees but also a significant negative impact in aquatic ecosystems. In this work, the capability of catalytic wet peroxide oxidation (CWPO) (Fe3O4-R400/H2O2) as a low-cost and environmentally-friendly system for the treatment of the neonicotinoid pesticides listed in the EU Watch List (Decision 2018/840) (acetamiprid (ACT), clothianidin (CLT), imidacloprid (IMD), thiacloprid (THC) and thiamethoxam (THM)) has been investigated. Remarkably, complete elimination of the pollutants (1000 g L-1)and the aromatic by-products was reached in 20 min reaction time operating at 25 °C, 1 atm, and pH0 = 5,, with the stoichiometric H2O2 amount (~4 – 5 mg L-1) and 1 g L-1 catalyst load. The reactivity order of the insecticides decreased as follows: THC>IMD>THM>CLT>ACT, being the pseudo-first order rate constant values within the range of 0.26 – 0.61 min-1. Notably, high mineralization yields were obtained (>50%) being the final effluents non-toxic. As example, the oxidation pathway of ACT was proposed. Finally, the catalytic system was tested in real surface waterThis research has been founded by the CTM2016-76454-R project (Spanish MINECO) and by the S2013/MAE-2716 project (CM). M. Munoz thanks the postdoctoral Ramón y Cajal contract (RYC-2016-20648) to the Spanish MINEC

    Catalytic hydrodechlorination as polishing step in drinking water treatment for the removal of chlorinated micropollutants

    Full text link
    This Accepted Manuscript will be available for reuse under a CC BY-NC-ND license after 24 months of embargo periodThe presence of micropollutants in fresh waters represents an important challenge for drinking water treatment plants (DWTPs). In particular, the chlorinated ones are especially harmful given their high toxicity and strong bioaccumulation potential. The aim of this work is to evaluate the feasibility of catalytic hydrodechlorination (HDC) for the removal of a representative group of chlorinated micropollutants commonly found in the source waters of DWTPs: the antibiotic chloramphenicol (CAP), the anti-inflammatory diclofenac (DCF), the antibacterial agent triclosan (TCL) and the antidepressant sertraline (SRT). The complete degradation of the isolated micropollutants (3 mg L−1) was achieved in 1 h reaction time using a Pd/Al2O3 catalyst load of 0.25 g L−1 and a H2 flow rate of 50 N mL min−1. The experimental data were properly described by a pseudo-first order kinetic equation, obtaining degradation rate constants in the range of 0.32–1.56 L gcat−1 min−1 and activation energy values within 42–52 kJ mol−1. In all cases, the final reaction products were chlorine-free compounds and thus, HDC effluents were non-toxic (<0.1 TU). Remarkably, the catalyst showed a suitable stability upon five consecutive applications. The versatility of the process was demonstrated in the treatment of the micropollutants mixture in different aqueous matrices (mineral, surface and tap waters). Strikingly, the removal rate was not affected by the presence of co-existing substances, being the micropollutants completely removed in 15 min with 1 g L−1 catalyst concentration. Finally, the potential of HDC for the removal of trihalomethanes, by-products formed along the oxidation step by chlorination in DWTPs, was also demonstratedThis research has been supported by the Spanish MINECO thorough the project CTM2016-76454-R and by the CM through the project P2018/EMT-4341. J. Nieto-Sandoval thanks the Spanish MINECO for the FPI predoctoral grant (BES-2017- 081346). M. Munoz thanks the Spanish MINECO for the Ramón y Cajal postdoctoral contract (RYC-2016-20648

    On the ordeal of quinolone preparation via cyclisation of aryl-enamines; synthesis and structure of ethyl 6-methyl-7-iodo-4-(3-iodo-4-methylphenoxy)-quinoline-3-carboxylate

    Get PDF
    Recent studies directed to the design of compounds targeting the bc(1) protein complex of Plasmodium falciparum, the parasite responsible for most lethal cases of malaria, identified quinolones (4-oxo-quinolines) with low nanomolar inhibitory activity against both the enzyme and infected erythrocytes. The 4-oxo-quinoline 3-ester chemotype emerged as a possible source of potent bc(1) inhibitors, prompting us to expand the library of available analogs for SAR studies and subsequent lead optimization. We now report the synthesis and structural characterization of unexpected ethyl 6-methyl-7-iodo-4-(3-iodo-4-methylphenoxy)quinoline-3-carboxylate, a 4-aryloxy-quinoline 3-ester formed during attempted preparation of 6-methyl-7-iodo-4-oxo-quinoline-3-carboxylate (4-oxo-quinoline 3-ester). We propose that the 4-aryloxy-quinoline 3-ester derives from 6-methyl-7-iodo-4-hydroxy-quinoline-3-carboxylate (4-hydroxy-quinoline 3-ester), the enol form of 6-methyl-7-iodo-4-oxo-quinoline-3-carboxylate. Formation of the 4-aryloxy-quinoline 3-ester confirms the impact of quinolone/hydroxyquinoline tautomerism, both on the efficiency of synthetic routes to quinolones and on pharmacologic profiles. Tautomers exhibit different cLogP values and interact differently with the enzyme active site. A structural investigation of 6-methyl-7-iodo-4-oxo-quinoline-3-carboxylate and 6-methyl-7-iodo-4-hydroxy-quinoline-3-carboxylate, using matrix isolation coupled to FTIR spectroscopy and theoretical calculations, revealed that the lowest energy conformers of 6-methyl-7-iodo-4-hydroxy-quinoline-3-carboxylate, lower in energy than their most stable 4-oxo-quinoline tautomer by about 27 kJ mol(-1), are solely present in the matrix, while the most stable 4-oxo-quinoline tautomer is solely present in the crystalline phase.Fundacao para a Ciencia e Tecnologia (FCT - Portugal) [UID/Multi/04326/2013]; QREN-COMPETE-UE; CCMAR; FCT [SFRH/BD/81821/2011, RECI/BBB-BQB/0230/2012, UI0313/QUI/2013, UID/FIS/04564/2016]; FEDER/COMPETE-UE; [PTDC/QEQ-QFI/3284/2014 - POCI-01-0145-FEDER-016617]info:eu-repo/semantics/publishedVersio

    Diversity-Productivity Relationship in the Northeastern Tamaulipan Thornscrub Forest of Mexico

    Get PDF
    This research examines the diversity-productivity relationship in a semiarid scrubland, initially under late successional conditions and subsequently under early successional conditions created by experimental clearing, to explore the roles that productivity and stochastic mortality play in species exclusion in this environment. A total of fifteen plots were studied by measuring environmental conditions and biomass components of shrubs and seedlings. These stands were distributed along a productivity gradient across five different landforms. A hypothesis about the stochastic self-thinning mortality model along the gradient was evaluated with the diversity-productivity-environment data. The diversity-productivity relationship was linear and reversed between the early and late succession stages. The hypothesis of stochastic mortality of species exclusion was rejected in the early stages of succession and partially accepted in the mature stage of succession. Species exclusion was negatively related to productivity gradients, suggesting that strong interspecific competition occurs in high productivity plots and that a larger number of species can survive in higher abiotic stress landscapes. Further research is needed to understand the temporal and spatial variations of the ecological interactions that shape this plant community

    Adsorption of micropollutants onto realistic microplastics: role of microplastic nature, size, age, and NOM fouling

    Full text link
    This work aims at evaluating the role of nature, size, age, and natural organic matter (NOM) fouling of realistic microplastics (MPs) on the adsorption of two persistent micropollutants (diclofenac (DCF) and metronidazole (MNZ)). For such goal, four representative polymer types (polystyrene (PS), polyethylene terephthalate (PET), polypropylene (PP) and high-density polyethylene (HDPE)) were tested. MPs were obtained by cryogenic milling of different commercial materials (disposable bottles, containers, and trays), and fully characterized (optical microscopic and SEM images, FTIR, elemental analysis, water contact angle and pHslurry). The micropollutants hydrophobicity determined to a high extent their removal yield from water. Regardless of the MP's nature, the adsorption capacity for DCF was considerably higher than the achieved for MNZ, which can be related to its stronger hydrophobic properties and aromatic character. In fact, aromatic MPs (PS and PET) showed the highest adsorption capacity values with DCF (~100 μg g−1). The MP size also played a key role on its adsorption capacity, which was found to increase with decreasing the particle size (20–1000 μm). MPs aging (simulated by Fenton oxidation) led also to substantial changes on their sorption behavior. Oxidized MPs exhibited acidic surface properties which led to a strong decrease on the adsorption of the hydrophobic micropollutant (DCF) but to an increase with the hydrophilic one (MNZ). NOM fouling (WWTP effluent, river water, humic acid solution) led to a dramatic decrease on the MPs sorption capacity due to sorption sites blocking. Finally, the increase of pH or salinity of the aqueous medium increased the micropollutants desorptionThis research has been supported by the Autonoma University of Madrid and Community of Madrid through the project SI1-PJI-2019-00006, and by the Spanish MINECO through the project PID2019-105079RB-I00. Muñoz and J. Nieto-Sandoval thank the Spanish MINECO for the Ramón y Cajal postdoctoral contract (RYC-2016-20648) and the FPI predoctoral grant (BES-2017-081346), respectively. D. Ortiz thanks the Spanish MIU for the FPU predoctoral grant (FPU19/04816
    • …
    corecore