3,940 research outputs found

    Measurement of Hydrogen Peroxide Influx Into Cells: Preparation For Measurement Using On-Chip Microelectrode Array

    Get PDF
    Hydrogen peroxide (H2O2) is commonly known as a toxic reactive oxidative species (ROS) for cells. Recent studies have found evidence that H2O2 is also an important cellular signalling molecule. Quantifying cellular influx of H2O2 will contribute to researchers’ understanding of the role H2O2 plays in healthy cells and cells involved in the progression of cancers and degenerative diseases. This work utilizes an assay kit and fluorescence techniques to evaluate cell lines and conditions to create a model biological system for measuring cellular H2O2 consumption. Pancreatic beta cells (MIN6), astrocytes, and glioblastoma cells (GBM43 and GBAM1) were placed in 10 μM and 20 μM H2O2 solutions for up to 5 hours. The consumption of H2O2 was measured using an Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Molecular Probes/Invitrogen). GBAM1 cells exposed to 20 μM H2O2 displayed the fastest rate of H2O2 consumption (4.8 ± 1.2 nmol H2O2/min/106 cells), followed by GBM43 cells (1.5±0.46), astrocytes (1.1±0.24), and MIN6 cells (0.29±0.075). Additionally, the rate of consumption increased with increases in H2O2 concentration. In the future, an on-chip micro-electrode array (MEA) will be used for real-time electrochemical experiments to measure influx of H2O2 by astrocytes and GBAM1 cells with spatio-temporal resolution that the current techniques lack. The results from the electrochemical experiments will be compared to results from the assay kit to determine the ability of the MEA to accurately measure H2O2 concentration and flux. The MEA can be extended to a wide variety of cellular environments for analysis of additional real-time biological events

    Cellular Model of Hydrogen Peroxide Release: In Preparation for On-Chip Sensor Measurements

    Get PDF
    Hydrogen peroxide is traditionally associated with cellular damage; however, recent studies show that low levels of H2O2 are released by cells as part of normal intercellular communication. The mechanisms of hydrogen peroxide transport, uptake and release, and biological effects are not yet well known but have important implications for cancer, stem cells, and aging. Standard H2O2 assays cannot make spatially or temporally resolved quantitative measurements at a cellular scale. Previously we developed a microelectrode array (MEA) and calibration methods for quantifying H2O2 gradients in space and time. The sensor was validated using artificial H2O2 gradients at subsecond and micrometer scale resolutions. The present study begins cellular work on H2O2 release to identify a cellular model system for MEA sensor testing. The morphology and H2O2 release from U937 human monocytes were analyzed after stimulation with ionomycin (1.2 ug/mL) and/or phorbol 12-myristate 13-acetate (PMA). Monocytes were stimulated with PMA (10 ng/mL to 150 ng/mL) for six hours. Hydrogen peroxide release was quantified over time using a traditional amplex red flurometric assay method. Mouse pancreatic beta (MIN6) cells were also tested as a negative control. Monocytes stimulated with PMA alone produced, on average, three times more H2O2 than those stimulated with ionomycin or a combination. Monocytes without ionomycin released H2O2 at 18.34 pmol/min/106 cells at 25 ng/mL of PMA. Ten, 25, and 100 ng/mL of PMA produced H2O2 significantly faster than the non-stimulated control. No significant difference was seen between PMA concentrations when ionomycin was added. These results indicate that PMA stimulated human monocytes may serve as a good model system for cellular validation of the H2O2 MEAs. In the future, biofunctionalization of the electrodes for additional molecular specificity will allow for the expansion of the method to other analytes, giving the sensor potential use in non-traditional lab environments with the ability to perform multiple assays autonomously

    Evolution of protein complexes by duplication of homomeric interactions.

    Get PDF
    BACKGROUND: Cellular functions are accomplished by the concerted actions of functional modules. The mechanisms driving the emergence and evolution of these modules are still unclear. Here we investigate the evolutionary origins of protein complexes, modules in physical protein-protein interaction networks. RESULTS: We studied protein complexes in Saccharomyces cerevisiae, complexes of known three-dimensional structure in the Protein Data Bank and clusters of pairwise protein interactions in the networks of several organisms. We found that duplication of homomeric interactions, a large class of protein interactions, frequently results in the formation of complexes of paralogous proteins. This route is a common mechanism for the evolution of complexes and clusters of protein interactions. Our conclusions are further confirmed by theoretical modelling of network evolution. We propose reasons for why this is favourable in terms of structure and function of protein complexes. CONCLUSION: Our study provides the first insight into the evolution of functional modularity in protein-protein interaction networks, and the origins of a large class of protein complexes

    3D complex: a structural classification of protein complexes.

    Get PDF
    Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes

    Conserved signalling components coordinate epidermal patterning and cuticle deposition in barley

    Get PDF
    Faced with terrestrial threats, land plants seal their aerial surfaces with a lipid-rich cuticle. To breathe, plants interrupt their cuticles with adjustable epidermal pores, called stomata, that regulate gas exchange, and develop other specialised epidermal cells such as defensive hairs. Mechanisms coordinating epidermal features remain poorly understood. Addressing this, we studied two loci whose allelic variation causes both cuticular wax-deficiency and misarranged stomata in barley, identifying the underlying genes, Cer-g/ HvYDA1, encoding a YODA-like (YDA) MAPKKK, and Cer-s/ HvBRX-Solo, encoding a single BREVIS-RADIX (BRX) domain protein. Both genes control cuticular integrity, the spacing and identity of epidermal cells, and barley’s distinctive epicuticular wax blooms, as well as stomatal patterning in elevated CO(2) conditions. Genetic analyses revealed epistatic and modifying relationships between HvYDA1 and HvBRX-Solo, intimating that their products participate in interacting pathway(s) linking epidermal patterning with cuticular properties in barley. This may represent a mechanism for coordinating multiple adaptive features of the land plant epidermis in a cultivated cereal

    Common Variants in 40 Genes Assessed for Diabetes Incidence and Response to Metformin and Lifestyle Intervention in the Diabetes Prevention Program

    Get PDF
    OBJECTIVE: Genome-wide association studies have begun to elucidate the genetic architecture of type 2 diabetes. We examined whether single nucleotide polymorphisms (SNPs) identified through targeted complementary approaches affect diabetes incidence in the at-risk population of the Diabetes Prevention Program (DPP) and whether they influence a response to preventive interventions. RESEARCH DESIGN AND METHODS: We selected SNPs identified by prior genome-wide association studies for type 2 diabetes and related traits, or capturing common variation in 40 candidate genes previously associated with type 2 diabetes, implicated in monogenic diabetes, encoding type 2 diabetes drug targets or drug-metabolizing/transporting enzymes, or involved in relevant physiological processes. We analyzed 1,590 SNPs for association with incident diabetes and their interaction with response to metformin or lifestyle interventions in 2,994 DPP participants. We controlled for multiple hypothesis testing by assessing false discovery rates. RESULTS: We replicated the association of variants in the metformin transporter gene SLC47A1 with metformin response and detected nominal interactions in the AMP kinase (AMPK) gene STK11, the AMPK subunit genes PRKAA1 and PRKAA2, and a missense SNP in SLC22A1, which encodes another metformin transporter. The most significant association with diabetes incidence occurred in the AMPK subunit gene PRKAG2 (hazard ratio 1.24, 95% CI 1.09-1.40, P = 7 × 10(-4)). Overall, there were nominal associations with diabetes incidence at 85 SNPs and nominal interactions with the metformin and lifestyle interventions at 91 and 69 mostly nonoverlapping SNPs, respectively. The lowest P values were consistent with experiment-wide 33% false discovery rates. CONCLUSIONS: We have identified potential genetic determinants of metformin response. These results merit confirmation in independent samples

    Stabilization of O-O Bonds by d(0) Cations in Li4+xNi1-xWO6 (0 <= x <= 0.25) Rock Salt Oxides as the Origin of Large Voltage Hysteresis

    Get PDF
    Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state-of-the-art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition-metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (>200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d0 cations. However, Li-rich rock salt oxides with high valent d0 cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+xNi1–xWO6 (0 ≤ x ≤ 0.25) adopting two new and distinct cation-ordered variants of the rock salt structure. The Li4.15Ni0.85WO6 (x = 0.15) phase has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that more than two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d0 W6+ cation affords extensive (>2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O–O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d0 cation associates localized anion–anion bonding with the anion redox capacity

    Clinically Actionable Hypercholesterolemia and Hypertriglyceridemia in Children with Nonalcoholic Fatty Liver Disease

    Get PDF
    OBJECTIVE: To determine the percentage of children with nonalcoholic fatty liver disease (NAFLD) in whom intervention for low-density lipoprotein cholesterol or triglycerides was indicated based on National Heart, Lung, and Blood Institute guidelines. STUDY DESIGN: This multicenter, longitudinal cohort study included children with NAFLD enrolled in the National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. Fasting lipid profiles were obtained at diagnosis. Standardized dietary recommendations were provided. After 1 year, lipid profiles were repeated and interpreted according to National Heart, Lung, and Blood Institute Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction. Main outcomes were meeting criteria for clinically actionable dyslipidemia at baseline, and either achieving lipid goal at follow-up or meeting criteria for ongoing intervention. RESULTS: There were 585 participants, with a mean age of 12.8 years. The prevalence of children warranting intervention for low-density lipoprotein cholesterol at baseline was 14%. After 1 year of recommended dietary changes, 51% achieved goal low-density lipoprotein cholesterol, 27% qualified for enhanced dietary and lifestyle modifications, and 22% met criteria for pharmacologic intervention. Elevated triglycerides were more prevalent, with 51% meeting criteria for intervention. At 1 year, 25% achieved goal triglycerides with diet and lifestyle changes, 38% met criteria for advanced dietary modifications, and 37% qualified for antihyperlipidemic medications. CONCLUSIONS: More than one-half of children with NAFLD met intervention thresholds for dyslipidemia. Based on the burden of clinically relevant dyslipidemia, lipid screening in children with NAFLD is warranted. Clinicians caring for children with NAFLD should be familiar with lipid management

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures
    corecore