Measurement of hydrogen peroxide influx into cells: Preparation for measurement using on chip microelectrode array

Hannah R. Kriscovich^a, Sarah M. Libring^b, Siddarth V. Sridharan^c, James K. Nolan^d, Jose F. Rivera^c, Jenna L. Rickus^{d, e}, David B. Janes^c

^a Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
^b Department of Biomedical Engineering, Rutgers University
^c School of Electrical and Computer Engineering, Purdue University
^d Agricultural & Biological Engineering, Purdue University
^e Weldon School of Biomedical Engineering, Purdue University

ABSTRACT

Hydrogen peroxide (H₂O₂) is commonly known as a toxic reactive oxidative species (ROS) for cells. Recent studies have found evidence that H_2O_2 is also an important cellular signalling molecule. Quantifying cellular influx of H₂O₂ will contribute to researchers' understanding of the role H₂O₂ plays in healthy cells and cells involved in the progression of cancers and degenerative diseases. This work utilizes an assay kit and fluorescence techniques to evaluate cell lines and conditions to create a model biological system for measuring cellular H₂O₂ consumption. Pancreatic beta cells (MIN6), astrocytes, and glioblastoma cells (GBM43 and GBAM1) were placed in 10 μ M and 20 μ M H₂O₂ solutions for up to 5 hours. The consumption of H₂O₂ was measured using an Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Molecular Probes/Invitrogen). GBAM1 cells exposed to 20 μ M H₂O₂ displayed the fastest rate of H₂O₂ consumption (4.8 ± 1.2 nmol $H_2O_2/min/10^6$ cells), followed by GBM43 cells (1.5±0.46), astrocytes (1.1±0.24), and MIN6 cells (0.29±0.075). Additionally, the rate of consumption increased with increases in H_2O_2 concentration. In the future, an on-chip micro-electrode array (MEA) will be used for real-time electrochemical experiments to measure influx of H_2O_2 by astrocytes and GBAM1 cells with spatio-temporal resolution that the current techniques lack. The results from the electrochemical experiments will be compared to results from the assay kit to determine the ability of the MEA to accurately measure H₂O₂ concentration and flux. The MEA can be extended to a wide variety of cellular environments for analysis of additional real-time biological events.

KEYWORDS

Hydrogen peroxide, Biosensors, Microelectrode arrays (MEA), Real-time flux, Astrocytes