10 research outputs found

    A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus

    No full text
    Grapevine organs accumulate anthocyanins in a cultivar-specific and environmentally induced manner. The MYBA1-A2 genes within the berry color locus in chromosome 2 represent the major genetic determinants of fruit color. The simultaneous occurrence of transposon insertions and point mutations in these genes is responsible for most white-skinned phenotypes; however, the red pigmentation found in vegetative organs suggests the presence of additional regulators. This work describes a genomic region of chromosome 14 containing three closely related R2R3-MYB genes, named MYBA5, MYBA6 and MYBA7. Ectopic expression of the latter two genes in grapevine hairy roots promoted anthocyanin accumulation without affecting other phenylpropanoids. Transcriptomic profiling of hairy roots expressing MYBA1, MYBA6 and MYBA7 showed that these regulators share the activation of late biosynthetic and modification/transport-related genes, but differ in the activation of the FLAVONOID-3'5'-HYDROXYLASE (F3'5'H) family. An alternatively spliced MYBA6 variant was incapable of activating anthocyanin synthesis, however, because of the lack of an MYC1 interaction domain. MYBA1, MYBA6.1 and MYBA7 activated the promoters of UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT) and ANTHOCYANIN 3-O-GLUCOSIDE-6\u2033-O-ACYLTRANSFERASE (3AT), but only MYBA1 induced F3'5'H in concordance with the low proportion of tri-hydroxylated anthocyanins found in MYBA6-A7 hairy roots. This putative new color locus is related to the red/cyanidic pigmentation of vegetative organs in black- and white-skinned cultivars, and forms part of the UV-B radiation response pathway orchestrated by ELONGATED HYPOCOTYL\ua05 (HY5). These results demonstrate the involvement of additional anthocyanin regulators in grapevine and suggest an evolutionary divergence between the two grape color loci for controlling additional targets of the flavonoid pathway

    Is Judicial Inefficiency Increasing the House Property Market Weight in Spain? Evidence at the Local Level

    No full text

    La Doctrina de las Facilidades Esenciales ante el Tribunal de Defensa de la Libre Competencia (in Spanish) (The Essential Facilities Doctrine before the Chilean Antitrust Court.)

    No full text

    Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa

    No full text
    We aimed to assess the rate and predictive factors of bloodstream infection (BSI) due to multidrug-resistant (MDR) Pseudomonas aeruginosa in neutropenic cancer patients. We performed a multicenter, retrospective cohort study including oncohematological neutropenic patients with BSI due to P. aeruginosa conducted across 34 centers in 12 countries from January 2006 to May 2018. A mixed logistic regression model was used to estimate a model to predict the multidrug resistance of the causative pathogens. Of a total of 1,217 episodes of BSI due to P. aeruginosa, 309 episodes (25.4%) were caused by MDR strains. The rate of multidrug resistance increased significantly over the study period (P 0.033). Predictors of MDR P. aeruginosa BSI were prior therapy with piperacillin-tazobactam (odds ratio [OR], 3.48; 95% confidence interval [CI], 2.29 to 5.30), prior antipseudomonal carbapenem use (OR, 2.53; 95% CI, 1.65 to 3.87), fluoroquinolone prophylaxis (OR, 2.99; 95% CI, 1.92 to 4.64), underlying hematological disease (OR, 2.09; 95% CI, 1.26 to 3.44), and the presence of a urinary catheter (OR, 2.54; 95% CI, 1.65 to 3.91), whereas older age (OR, 0.98; 95% CI, 0.97 to 0.99) was found to be protective. Our prediction model achieves good discrimination and calibration, thereby identifying neutropenic patients at higher risk of BSI due to MDR P. aeruginosa. The application of this model using a web-based calculator may be a simple strategy to identify high-risk patients who may benefit from the early administration of broad-spectrum antibiotic coverage against MDR strains according to the local susceptibility patterns, thus avoiding the use of broad-spectrum antibiotics in patients at a low risk of resistance development

    D-dimer levels and 90-day outcome in patients with acute pulmonary embolism with or without cancer

    No full text
    BACKGROUND: The prognostic value of D-dimer testing in patients with acute pulmonary embolism (PE) has not been thoroughly studied. METHODS: We used the RIETE Registry data to assess the 90-day prognostic value of increased IL Test D-dimer levels at baseline in patients with PE, according to the presence or absence of cancer. RESULTS: As of May 2013, 3,283 patients with acute PE underwent D-dimer testing using IL Test D-dimer. Among 2,588 patients without cancer, those with D-dimer levels in the highest quartile had a higher rate of fatal PE (2.6% vs. 0.9%; p=0.002), fatal bleeding (1.1% vs. 0.3%; p=0.017) and all-cause death (9.1% vs. 4.4%; p<0.001) at 90 days compared with those with levels in the lowest quartiles. Among 695 patients with cancer, those with levels in the highest quartile had a similar rate of fatal PE or fatal bleeding but higher mortality (35% vs. 24%; p<0.01). On multivariate analysis, non-cancer patients with D-dimer levels in the highest quartile had an increased risk for fatal PE (odds ratio [OR]: 3.3; 95% CI: 1.6-6.6), fatal bleeding (OR: 4.3; 95% CI: 1.4-13.7) and all-cause death (OR: 2.1; 95% CI: 1.4-3.1) compared with patients with levels in the lowest quartiles. CONCLUSIONS: Non-cancer patients with acute PE and IL Test D-dimer levels in the highest quartile had an independently higher risk for fatal PE, fatal bleeding and all-cause death at 90 days than those with levels in the lowest quartiles. In patients with cancer, D-dimer levels failed to predict fatal PE or fatal bleeding
    corecore