2,131 research outputs found

    Physical Wigner functions

    Get PDF
    In spite of their potential usefulness, the characterizations of Wigner functions for Bose and Fermi statistics given by O'Connell and Wigner himself almost thirty years ago has drawn little attention. With an eye towards applications in quantum chemistry, we revisit and reformulate them in a more convenient way.Comment: Latex, 10 page

    Langevin theory of absorbing phase transitions with a conserved magnitude

    Full text link
    The recently proposed Langevin equation, aimed to capture the relevant critical features of stochastic sandpiles, and other self-organizing systems is studied numerically. This equation is similar to the Reggeon field theory, describing generic systems with absorbing states, but it is coupled linearly to a second conserved and static (non-diffusive) field. It has been claimed to represent a new universality class, including different discrete models: the Manna as well as other sandpiles, reaction-diffusion systems, etc. In order to integrate the equation, and surpass the difficulties associated with its singular noise, we follow a numerical technique introduced by Dickman. Our results coincide remarkably well with those of discrete models claimed to belong to this universality class, in one, two, and three dimensions. This provides a strong backing for the Langevin theory of stochastic sandpiles, and to the very existence of this new, yet meagerly understood, universality class.Comment: 4 pages, 3 eps figs, submitted to PR

    Sticky grains do not change the universality class of isotropic sandpiles

    Full text link
    We revisit the sandpile model with ``sticky'' grains introduced by Mohanty and Dhar [Phys. Rev. Lett. {\bf 89}, 104303 (2002)] whose scaling properties were claimed to be in the universality class of directed percolation for both isotropic and directed models. Simulations in the so-called fixed-energy ensemble show that this conclusion is not valid for isotropic sandpiles and that this model shares the same critical properties of other stochastic sandpiles, such as the Manna model. %as expected from the existence of an extra %conservation-law, absent in directed percolation. These results are strengthened by the analysis of the Langevin equations proposed by the same authors to account for this problem which we show to converge, upon coarse-graining, to the well-established set of Langevin equations for the Manna class. Therefore, the presence of a conservation law keeps isotropic sandpiles, with or without stickiness, away from the directed percolation class.Comment: 4 pages. 3 Figures. Subm. to PR

    Classical and Quantum Chaos in a quantum dot in time-periodic magnetic fields

    Full text link
    We investigate the classical and quantum dynamics of an electron confined to a circular quantum dot in the presence of homogeneous Bdc+BacB_{dc}+B_{ac} magnetic fields. The classical motion shows a transition to chaotic behavior depending on the ratio Ï”=Bac/Bdc\epsilon=B_{ac}/B_{dc} of field magnitudes and the cyclotron frequency ω~c{\tilde\omega_c} in units of the drive frequency. We determine a phase boundary between regular and chaotic classical behavior in the Ï”\epsilon vs ω~c{\tilde\omega_c} plane. In the quantum regime we evaluate the quasi-energy spectrum of the time-evolution operator. We show that the nearest neighbor quasi-energy eigenvalues show a transition from level clustering to level repulsion as one moves from the regular to chaotic regime in the (Ï”,ω~c)(\epsilon,{\tilde\omega_c}) plane. The Δ3\Delta_3 statistic confirms this transition. In the chaotic regime, the eigenfunction statistics coincides with the Porter-Thomas prediction. Finally, we explicitly establish the phase space correspondence between the classical and quantum solutions via the Husimi phase space distributions of the model. Possible experimentally feasible conditions to see these effects are discussed.Comment: 26 pages and 17 PstScript figures, two large ones can be obtained from the Author

    Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice Coulomb gas

    Full text link
    We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent a(T)a(T) of the nonlinear current-voltage characteristic, V∌Ia(T)+1V \sim I^{a(T)+1}. The determinations rely on both equilibrium and non-equilibrium simulations. We find good agreement between the different determinations, and our results also agree closely with experimental results for Hg-Xe thin film superconductors and for certain single crystal thin-film high temperature superconductors.Comment: late

    Phase synchronization in tilted deterministic ratchets

    Full text link
    We study phase synchronization for a ratchet system. We consider the deterministic dynamics of a particle in a tilted ratchet potential with an external periodic forcing, in the overdamped case. The ratchet potential has to be tilted in order to obtain a rotator or self-sustained nonlinear oscillator in the absence of external periodic forcing. This oscillator has an intrinsic frequency that can be entrained with the frequency of the external driving. We introduced a linear phase through a set of discrete time events and the associated average frequency, and show that this frequency can be synchronized with the frequency of the external driving. In this way, we can properly characterize the phenomenon of synchronization through Arnold tongues, which represent regions of synchronization in parameter space, and discuss their implications for transport in ratchets.Comment: 14 pages, 6 figures, Physica A, in pres

    Multifractal properties of return time statistics

    Full text link
    Fluctuations in the return time statistics of a dynamical system can be described by a new spectrum of dimensions. Comparison with the usual multifractal analysis of measures is presented, and difference between the two corresponding sets of dimensions is established. Theoretical analysis and numerical examples of dynamical systems in the class of Iterated Functions are presented.Comment: 4 pages, 3 figure

    Transformation of spin information into large electrical signals via carbon nanotubes

    Get PDF
    Spin electronics (spintronics) exploits the magnetic nature of the electron, and is commercially exploited in the spin valves of disc-drive read heads. There is currently widespread interest in using industrially relevant semiconductors in new types of spintronic devices based on the manipulation of spins injected into a semiconducting channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation such that the magnetoresistive signals are below 1%. We overcome this long standing problem in spintronics by demonstrating large magnetoresistance effects of 61% at 5 K in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 micron gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This improvement arises because the spin lifetime in nanotubes is long due the small spin-orbit coupling of carbon, because the high nanotube Fermi velocity permits the carrier dwell time to not significantly exceed this spin lifetime, because the manganite remains highly spin polarized up to the manganite-nanotube interface, and because the interfacial barrier is of an appropriate height. We support these latter statements regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire adventure in materials selection for some future spintronicsComment: Content highly modified. New title, text, conclusions, figures and references. New author include

    Flux front penetration in disordered superconductors

    Full text link
    We investigate flux front penetration in a disordered type II superconductor by molecular dynamics (MD) simulations of interacting vortices and find scaling laws for the front position and the density profile. The scaling can be understood performing a coarse graining of the system and writing a disordered non-linear diffusion equation. Integrating numerically the equation, we observe a crossover from flat to fractal front penetration as the system parameters are varied. The value of the fractal dimension indicates that the invasion process is described by gradient percolation.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let
    • 

    corecore