6 research outputs found

    Efecto del contenido de BaSO y DEAEA 4 sobre las propiedades reológicas de cementos óseos para vertebroplastia.

    No full text
    En este trabajo se estudió el efecto del contenido de sulfato de bario (BaSO ) y del acrilato del 2-dietilamino etilo 4 (DEAEA) sobre el comportamiento reológico (inyectabilidad y viscosidad) de cementos óseos acrílicos, empleando para esto un diseño experimental con gráficos de superficies de respuesta y de contorno. Los resultados mostraron que un aumento en el contenido de BaSO produce una disminución de la viscosidad y un aumento de la 4 inyectabilidad del cemento óseo en estado fresco; en contraste, el DEAEA solo parece tener un ligero efecto sobre la inyectabilidad del mismo. La formulación con 4 % de DEAEA y 30 % de BaSO resultó tener las mejores propiedades 4 reológicas para su posible aplicación en vertebroplastia percutánea (VPP), por lo que esta formulación fue caracterizada fisicoquímica y mecánicamente; los resultados obtenidos en estos análisis fueron comparados con el cemento óseo comercial Zimmer Dough

    Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility

    Full text link
    [EN] Electrospun polycaprolactone (PCL)/chitosan (CH) blend scaffolds with different CH weight ratios were prepared to study the effect of scaffold composition on its physicochemical and biological properties. Scanning electron microscopy showed bead-free homogeneous randomly arranged nanofibers whose average diameter decreased from 240 to 110 nm with increasing CH content. The infrared spectra of the PCL/CH blends were very similar to the neat PCL scaffold. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of carbon, oxygen and nitrogen in the scaffolds, although fluorine-from chemicals used as solvent-was also detected. The water contact angle decreased from 113 degrees (for PCL) to 52 degrees with increasing chitosan content. The biocompatibility was evaluated using fibroblasts and Schwann cell (SC) cultures. Cytotoxicity assays using fibroblasts demonstrated that electrospun scaffolds could be considered as non-cytotoxic material. Biocompatibility tests also revealed that the SCs adhered to scaffolds with different CH content, although the formulation containing CH at 5 wt% exhibited the highest proliferation on days 1 and 3. A better cell distribution was observed in the CH/PCL blends than in the neat PCL or CH scaffolds, where the cells were clustered. Immunochemistry analysis confirmed that SCs expressed the specific p75 cell marker on the scaffolds, suggesting that PCL/CH scaffolds would be good candidates for peripheral nerve tissue engineering.This work was supported by CONACYT (Mexico) grant CB 2011-169698-Y. Ena Bolaina-Lorenzo acknowledges CONACYT for her scholarship (236153) and for her internship support (290842) through the 'BECAS MIXTAS' program. CMR and MMP acknowledge support of the Spanish Ministry through project MAT2015-66666-C3-1-R. Assistance and advice received from the Electron Microscopy Service at the Universitat Politecnica de Valencia is also acknowledged. Support from the Fondo Mixto CONACYT-Gobierno del Estado de Yucatan, project no. 247046, 'Fortalecimiento e Internacionalizacion del Doctorado en Ciencias (Materiales Polimericos)' is also acknowledged.Bolaina-Lorenzo, E.; Martínez-Ramos, C.; Monleón Pradas, M.; Herrera-Kao, W.; Cauich-Rodríguez, JV.; Cervantes-Uc, JM. (2017). Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility. Biomedical Materials. 12(1):1-10. https://doi.org/10.1088/1748-605X/12/1/015008S110121Kehoe, S., Zhang, X. F., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572. doi:10.1016/j.injury.2010.12.030Ciardelli, G., & Chiono, V. (2006). Materials for Peripheral Nerve Regeneration. Macromolecular Bioscience, 6(1), 13-26. doi:10.1002/mabi.200500151Chiono, V., Tonda‐Turo, C., & Ciardelli, G. (2009). Chapter 9 Artificial Scaffolds for Peripheral Nerve Reconstruction. International Review of Neurobiology, 173-198. doi:10.1016/s0074-7742(09)87009-8Hasirci, V., Arslantunali, D., Dursun, T., Yucel, D., & Hasirci, N. (2014). Peripheral nerve conduits: technology update. Medical Devices: Evidence and Research, 405. doi:10.2147/mder.s59124Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Wan, Y., Lu, X., Dalai, S., & Zhang, J. (2009). Thermophysical properties of polycaprolactone/chitosan blend membranes. Thermochimica Acta, 487(1-2), 33-38. doi:10.1016/j.tca.2009.01.007Cooper, A., Bhattarai, N., & Zhang, M. (2011). Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydrate Polymers, 85(1), 149-156. doi:10.1016/j.carbpol.2011.02.008Sangsanoh, P., Waleetorncheepsawat, S., Suwantong, O., Wutticharoenmongkol, P., Weeranantanapan, O., Chuenjitbuntaworn, B., … Supaphol, P. (2007). In Vitro Biocompatibility of Schwann Cells on Surfaces of Biocompatible Polymeric Electrospun Fibrous and Solution-Cast Film Scaffolds. Biomacromolecules, 8(5), 1587-1594. doi:10.1021/bm061152aYildirim, E. D., Gandhi, M., Fridman, A., Güçeri, S., & Sun, W. (s. f.). Plasma Surface Modification of Three Dimensional Poly (ε-Caprolactone) Scaffolds for Tissue Engineering Application. NATO Science for Peace and Security Series A: Chemistry and Biology, 191-201. doi:10.1007/978-1-4020-8439-3_17Gautam, S., Chou, C.-F., Dinda, A. K., Potdar, P. D., & Mishra, N. C. (2013). Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. Journal of Materials Science, 49(3), 1076-1089. doi:10.1007/s10853-013-7785-8Du, F., Wang, H., Zhao, W., Li, D., Kong, D., Yang, J., & Zhang, Y. (2012). Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials, 33(3), 762-770. doi:10.1016/j.biomaterials.2011.10.037Gnavi, S., Barwig, C., Freier, T., Haastert-Talini, K., Grothe, C., & Geuna, S. (2013). The Use of Chitosan-Based Scaffolds to Enhance Regeneration in the Nervous System. Tissue Engineering of the Peripheral Nerve - Biomaterials and physical therapy, 1-62. doi:10.1016/b978-0-12-420045-6.00001-8Malheiro, V. N., Caridade, S. G., Alves, N. M., & Mano, J. F. (2010). New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomaterialia, 6(2), 418-428. doi:10.1016/j.actbio.2009.07.012Van der Schueren, L., Steyaert, I., De Schoenmaker, B., & De Clerck, K. (2012). Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydrate Polymers, 88(4), 1221-1226. doi:10.1016/j.carbpol.2012.01.085Bhattarai, N., Li, Z., Gunn, J., Leung, M., Cooper, A., Edmondson, D., … Zhang, M. (2009). Natural-Synthetic Polyblend Nanofibers for Biomedical Applications. Advanced Materials, 21(27), 2792-2797. doi:10.1002/adma.200802513Hong, S., & Kim, G. (2011). Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydrate Polymers, 83(2), 940-946. doi:10.1016/j.carbpol.2010.09.002Prabhakaran, M. P., Venugopal, J. R., Chyan, T. T., Hai, L. B., Chan, C. K., Lim, A. Y., & Ramakrishna, S. (2008). Electrospun Biocomposite Nanofibrous Scaffolds for Neural Tissue Engineering. Tissue Engineering Part A, 14(11), 1787-1797. doi:10.1089/ten.tea.2007.0393Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V., & Jayakumar, R. (2010). Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydrate Polymers, 80(2), 413-419. doi:10.1016/j.carbpol.2009.11.039Yang, X., Chen, X., & Wang, H. (2009). Acceleration of Osteogenic Differentiation of Preosteoblastic Cells by Chitosan Containing Nanofibrous Scaffolds. Biomacromolecules, 10(10), 2772-2778. doi:10.1021/bm900623jYao, Y., Wang, J., Cui, Y., Xu, R., Wang, Z., Zhang, J., … Kong, D. (2014). Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia, 10(6), 2739-2749. doi:10.1016/j.actbio.2014.02.042Steyaert, I., Van der Schueren, L., Rahier, H., & de Clerck, K. (2012). An Alternative Solvent System for Blend Electrospinning of Polycaprolactone/Chitosan Nanofibres. Macromolecular Symposia, 321-322(1), 71-75. doi:10.1002/masy.201251111Chiono, V., Vozzi, G., D’Acunto, M., Brinzi, S., Domenici, C., Vozzi, F., … Ciardelli, G. (2009). Characterisation of blends between poly(ε-caprolactone) and polysaccharides for tissue engineering applications. Materials Science and Engineering: C, 29(7), 2174-2187. doi:10.1016/j.msec.2009.04.020Gomes, S. R., Rodrigues, G., Martins, G. G., Roberto, M. A., Mafra, M., Henriques, C. M. R., & Silva, J. C. (2015). In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Materials Science and Engineering: C, 46, 348-358. doi:10.1016/j.msec.2014.10.051Sangsanoh, P., & Supaphol, P. (2006). Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions. Biomacromolecules, 7(10), 2710-2714. doi:10.1021/bm060286lElzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381-387. doi:10.1016/j.jcis.2004.02.001Sarasam, A. R., Krishnaswamy, R. K., & Madihally, S. V. (2006). Blending Chitosan with Polycaprolactone:  Effects on Physicochemical and Antibacterial Properties. Biomacromolecules, 7(4), 1131-1138. doi:10.1021/bm050935dCorreia, D. M., Gámiz-González, M. A., Botelho, G., Vidaurre, A., Gomez Ribelles, J. L., Lanceros-Mendez, S., & Sencadas, V. (2014). Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry, 117(1), 123-130. doi:10.1007/s10973-014-3707-5She, H., Xiao, X., & Liu, R. (2007). Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications. Journal of Materials Science, 42(19), 8113-8119. doi:10.1007/s10853-007-1706-7Senda, T., He, Y., & Inoue, Y. (2001). Biodegradable blends of poly(?-caprolactone) with?-chitin and chitosan: specific interactions, thermal properties and crystallization behavior. Polymer International, 51(1), 33-39. doi:10.1002/pi.793SARASAM, A., & MADIHALLY, S. (2005). Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials, 26(27), 5500-5508. doi:10.1016/j.biomaterials.2005.01.071Wanjun, T., Cunxin, W., & Donghua, C. (2005). Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation and Stability, 87(3), 389-394. doi:10.1016/j.polymdegradstab.2004.08.006Schmidt, C. E., & Leach, J. B. (2003). Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering, 5(1), 293-347. doi:10.1146/annurev.bioeng.5.011303.120731Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., … Hibino, N. (2016). Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLOS ONE, 11(7), e0158555. doi:10.1371/journal.pone.0158555Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013Kim, S. H., Ha, H. J., Ko, Y. K., Yoon, S. J., Rhee, J. M., Kim, M. S., … Khang, G. (2007). Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of Biomaterials Science, Polymer Edition, 18(5), 609-622. doi:10.1163/156856207780852514Sangsanoh, P., Suwantong, O., Neamnark, A., Cheepsunthorn, P., Pavasant, P., & Supaphol, P. (2010). In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. European Polymer Journal, 46(3), 428-440. doi:10.1016/j.eurpolymj.2009.10.029Duda, S., Dreyer, L., Behrens, P., Wienecke, S., Chakradeo, T., Glasmacher, B., & Haastert-Talini, K. (2014). Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides. BioMed Research International, 2014, 1-16. doi:10.1155/2014/83526
    corecore