36 research outputs found

    Testing the Applicability of 119Sn Mössbauer Spectroscopy for the Internal Stress Study in Ternary and Co-Doped Ni-Mn-Sn Metamagnetic Alloys

    Get PDF
    The influence of both the Co addition and the internal stress on the atomic level magnetism is comparatively studied in Ni50Mn37Sn13 and Ni45Mn38Sn13Co4 alloys by magnetic measurements and 119Sn Mössbauer spectroscopy. The results show that the saturation magnetization and the hyperfine field follow the same temperature trend. The internal stress state is investigated by subjecting the samples to milling and annealing treatments, and tracking the singlet component revealed by 119Sn Mössbauer spectroscopy. Contrary to what was expected, in the Co-doped Ni-Mn-Sn sample the singlet component can be resolved between the milled and annealed states in both martensite and austenite phases. Therefore, the results demonstrate the feasibility of tracking the singlet component upon the structural recovery in Co-doped Ni-Mn-Sn alloys in a much wider range than in ternary alloys. In addition, it is concluded that the transferred dipolar field at Sn from the neighbor magnetic atoms depends very strongly on the stress field and on the microstructural order surrounding Sn atoms. The observed sensitivity of Sn Mössbauer probe atoms to slight microstructural distortions make 119 Sn a powerful technique for the characterization of the stress present in Sn containing metamagnetic shape memory alloys.This research was funded by Projects RTI2018-094683-B-C5 (4,5) (MCIU/AEI/FEDER, UE) and Basque Government Grant IT-1005–16

    When the sun never sets : daily changes in pigment composition in three subarctic woody plants during the summer solstice

    Get PDF
    Subarctic plants in summer (subjected to continuous light) showed photosynthetic pigment contents mainly driven by PPFD (unrelated to day/night cycles) and a xanthophyll cycle responsiveness to PPFD exacerbated during night-times. Composition and content of photosynthetic pigments is finely tuned by plants according to a subtle equilibrium between the absorbed and used energy by the photosynthetic apparatus. Subarctic and Arctic plants are subjected to extended periods of continuous light during summer. This condition represents a unique natural scenario to study the influence of light on pigment regulation and the presence of diurnal patterns potentially governed by circadian rhythms. Here, we examined the modulation of the photosynthetic apparatus in three naturally co-occurring woody species: mountain birch (Betula pubescens ssp. czerepanovii), alpine bearberry (Arctostaphylos alpina) and Scots pine (Pinus sylvestris) around the summer solstice, at 67 A degrees N latitude. Plants were continuously exposed to solar radiation during the 3-day study period, although PPFD fluctuated, being lower during night-times. Photochemical efficiencies for a given PPFD were similar during daytime and night-time for the three species. In Scots pine, for a given PPFD, net assimilation was slightly higher during daytime than during night-time. Overall, the dynamism in pigment content was mainly driven by PPFD, and was generally unrelated to day/night cycles. Weak indications of potential circadian regulation were found over a few pigments only. Interestingly, the xanthophyll cycle was active at any time of the day in the three species but its responsiveness to PPFD was exacerbated during night-times. This was particularly evident for bearberry, which maintained a highly de-epoxidised state even at night-times. The results could indicate an incomplete acclimation to a 24-h photoperiod for these species, which have colonised subarctic latitudes only recently.Peer reviewe

    Influence of Structural Defects on the Properties of Metamagnetic Shape Memory Alloys

    Get PDF
    The production of μ-particles of Metamagnetic Shape Memory Alloys by crushing and subsequent ball milling process has been analyzed. The high energy involved in the milling process induces large internal stresses and high density of defects with a strong influence on the martensitic transformation; the interphase creation and its movement during the martensitic transformation produces frictional contributions to the entropy change (exothermic process) both during forward and reverse transformation. The frictional contribution increases with the milling time as a consequence of the interaction between defects and interphases. The influence of the frictional terms on the magnetocaloric effect has been evidenced. Besides, the presence of antiphase boundaries linked to superdislocations helps to understand the spin-glass behavior at low temperatures in martensite. Finally, the particles in the deformed state were introduced in a photosensitive polymer. The mechanical damping associated to the Martensitic Transformation (MT) of the particles is clearly distinguished in the produced composite, which could be interesting for the development of magnetically-tunable mechanical dampers.This research was funded by Projects RTI2018-094683-B-C5 (4,5) (MCIU/AEI/FEDER,UE); ASACTEI Pcia.Santa Fe IO-2017-00138, PID-UNR ING 575 and ING 612 (2018–202

    Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions

    No full text
    Carotenoids have traditionally been subscribed to their role as accessory pigments in photosynthesis. However, the large and growing body of literature investigated on the field have revealed that carotenoids fulfil a plethora of essential roles in plants but also in animals and in humans. Recent studies emphasizing the functional role of molecules derived from carotenoids oxidation as β-cyclocitral or dihydroactinidiolide led to a renewed interest, opening a new era for the carotenoids research. This review brings together the knowledge obtained so far regarding diversity and functions of carotenoids, highlighting carotenoids versatility and the remarkable parallel roles of carotenoids in both plants and in animals. Evolutionary aspects and the responses of carotenoids to biotic and abiotic stresses are discussed. Furthermore, we outline the way in which one can understand the environmental regulation to enhance carotenoid content in food. In addition, an up-to-date overview of carotenoids as elements of information storage system for the responses to environmental signals is provided together with suggestions for future directions of research.The authors acknowledge the support of research grants BFU 2010-15021 (co-funded by Feder), AGL2012-39715-CO3-01, UPV/ EHU-GV IT-624-13 and the JAE-Doc-2011-046 fellow from the Spanish National Research Council (CSIC) received by RE.Peer Reviewe

    Seasonal changes in xanthophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under mediterranean climate

    Get PDF
    Seasonal changes in pigment composition of sun and shade leaves of cork oak (Quercus suber) were studied under field conditions in Portugal. Expanding leaves showed a high concentration of xanthophyll cycle components, violaxanthin, antheraxanthin and zeaxanthin. The pool of violaxanthin plus antheraxanthin plus zeaxanthin (V+A+Z) varied greatly between the seasons, being higher at the end of summer and in winter when photosynthesis was limited by water stress and cold, respectively. The size of V+A+Z pool was associated to synthesis of zeaxanthin in response to an excess of light. In sun leaves, midday A+Z relative content was positively correlated with the V+A+Z pool, whereas in shade leaves A+Z decreased with leaf ageing. In both leaf types A+Z was positively correlated with the non-photochemical quenching (NPQ) of chlorophyll a fluorescence. However, in winter NPQ did not change significantly throughout the day, whereas the (A+Z)/(V+A+Z) increased following the typical daily trend observed in other seasons.This work was financed by the project EC contract AIR3-CT920135 and PRAXIS XXI no 2/2.1/B1A/227/94.Peer reviewe

    Opening Pandora’s box: Cause and impact of errors on plant pigment studies

    Get PDF
    Supporting from BFU 2010-15021, UPV/EHU-GV IT-624-13 grant, JAEDoc-2011-046 fellow from the Spanish National Research Council (CSIC) received by RE and Marie Curie IEF grant (328370 MELISSA) from the European FP7-PEOPLE received by BF-M, are also acknowledged.Peer Reviewe

    New Insights on Glyphosate Mode of Action in Nodular Metabolism: Role of Shikimate Accumulation

    Get PDF
    8 pages, figures, and tables statistics.The short-term effects of the herbicide glyphosate (1.25-10 mM) on the growth, nitrogen fixation, carbohydrate metabolism, and shikimate pathway were investigated in leaves and nodules of nodulated lupine plants. All glyphosate treatments decreased nitrogenase activity rapidly (24 h) after application, even at the lowest and sublethal dose used (1.25 mM). This early effect on nitrogenase could not be related to either damage to nitrogenase components (I and II) or limitation of carbohydrates supplied by the host plant. In fact, further exposure to increasing glyphosate concentrations (5 mM) and greater time after exposure (5 days) decreased nodule starch content and sucrose synthase (SS; EC 2.4.1.13) activity but increased sucrose content within the nodule. These effects were accompanied by a great inhibition of the activity of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31). There were remarkable and rapid effects on the increase of shikimic and protocatechuic (PCA) acids in nodules and leaves after herbicide application. On the basis of the role of shikimic acid and PCA in the regulation of PEPC, as potent competitive inhibitors, this additional effect provoked by glyphosate on 5-enolpyruvylshikimic-3-phosphate synthase enzyme (EPSPS; EC 2.5.1.19) inhibition would divert most PEP into the shikimate pathway, depriving energy substrates to bacteroids to maintain nitrogen fixation. These findings provide a new explanation for the effectiveness of glyphosate as a herbicide in other plant tissues, for the observed differences in tolerance among species or cultivars, and for the transitory effects on glyphosate-resistant transgenic crops under several environmental conditions.We thank M. C. de Mesa and M. I. Menendez for technical assistance.Peer reviewe
    corecore