37 research outputs found

    Autonomic impairment of patients in coma with different Glasgow coma score assessed with heart rate variability

    Get PDF
    Primary objective: The objective of this study is to assess the functional state of the autonomic nervous system in healthy individuals and in individuals in coma using measures of heart rate variability (HRV) and to evaluate its efficiency in predicting mortality. Design and Methods: Retrospective group comparison study of patients in coma classified into two subgroups, according to their Glasgow coma score, with a healthy control group. HRV indices were calculated from 7 min of artefact-free electrocardiograms using the Hilbert–Huang method in the spectral range 0.02–0.6 Hz. A special procedure was applied to avoid confounding factors. Stepwise multiple regression logistic analysis (SMLRA) and ROC analysis evaluated predictions. Results: Progressive reduction of HRV was confirmed and was associated with deepening of coma and a mortality score model that included three spectral HRV indices of absolute power values of very low, low and very high frequency bands (0.4-0.6 Hz). The SMLRA model showed sensitivity of 95.65%, specificity of 95.83%, positive predictive value of 95.65%, and overall efficiency of 95.74%. Conclusions: HRV is a reliable method to assess the integrity of the neural control of the caudal brainstem centres on the hearts of patients in coma and to predict patient mortality

    Colombian consensus recommendations for diagnosis, management and treatment of the infection by SARS-COV-2/ COVID-19 in health care facilities - Recommendations from expert´s group based and informed on evidence

    Get PDF
    La Asociación Colombiana de Infectología (ACIN) y el Instituto de Evaluación de Nuevas Tecnologías de la Salud (IETS) conformó un grupo de trabajo para desarrollar recomendaciones informadas y basadas en evidencia, por consenso de expertos para la atención, diagnóstico y manejo de casos de Covid 19. Estas guías son dirigidas al personal de salud y buscar dar recomendaciones en los ámbitos de la atención en salud de los casos de Covid-19, en el contexto nacional de Colombia

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    Polymerization of ε-caprolactone with degraded PET for its functionalization

    No full text
    Poly(caprolactone) (PCL) was synthesized from the polymerization of ε-caprolactone (CL) with degraded poly(ethylene terephthalate) (PET) for its functionalization using heptamolybdate of ammonium and tin(II) 2-ethylhexanoate, as catalyst and initiator, respectively. Polymerization of CL with bis(2-hydroxyethyl) terephthalate (BHET) was carried out to make a comparison. From the analysis by FTIR, the functional groups of polycaprolactone and degraded PET were identified by FTIR. The chemical shift at 165.59 ppm obtained by NMR corresponded to the chemical bond between the carbonyl of the PCL bound to the -CHCO-CHO of the degraded PET. The number average molar mass of polymer obtained was determined and its chemical structure was proposed. Crystallinity and the temperatures of melting and degradation depended of the mass of degraded PET used in the synthesis. Based on the proposed chemical structure, the synthesized polymer could be used in the preparation of other polymers.We are grateful to Universidad del Papaloapan and Martha Rocio Valencia Estacio, for their assistance on this articl

    Thermal Stability and Lubrication Properties of Biodegradable Castor Oil on AISI 4140 Steel

    No full text
    Lubricants have much importance in several industries, principally serving to reduce friction and wear in mechanical elements. In this study, the influence of Castor oil as bio-lubricant on the friction and wear performance of AISI 4140 steel was investigated. For that purpose, pin-on-disk friction tests were conducted according to ASTM G-99, by using pins of tungsten carbide (WC) as counterparts. The experiments were performed at two different temperatures. This work also presents the Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and 1H-NMR analyses for the chemical characterization of oils and a study of their degradation by oxidation. The analysis of the damage caused to steel due to friction was deepened by analyzing its microhardness and microstructure in the worn zone. As a reference, the same experiments were performed with a commercial oil. The friction behavior of 4140 steel/WC with Castor oil lubrication at the two temperatures was notably better than that obtained under the reference oil lubrication. The kinetic friction coefficient (&micro;k) was up to 76% lower. However, a slight increase in steel wear was observed under Castor oil lubrication. Despite this, these results suggest that Castor oil could be used as bio-lubricant in systems which are susceptible to levels of high friction

    Hydrocortisone release from tablets based on bioresorbable poly(ether-ester-urethane)s

    Get PDF
    Bioresorbable linear poly(ether-ester-urethane)s with different hydrophilic characteristics were synthesized from triblock copolymers of poly(¿-caprolactone)-poly(ethylene oxide)-poly(¿-caprolactone) (PCL-PEO) as macrodiols, and L-lysine diisocyanate (LDI) or hexamethylenediisocyanate (HDI) were used as the required diisocyanates. Macrodiols were obtained by ring-opening polymerization (ROP) of ¿-caprolactone (CL). Polyurethanes were synthesized by the reaction of the triblock copolymers with LDI or HDI in solution using stannous 2-ethylhexanoate as catalyst. Polyurethane tablets were fabricated and investigated as prospective drug delivery systems. The effect of the PEO content on the polymers¿ performance as drug carriers was evaluated. It was found that water provoked more swelling and erosion of polymers with higher contents of PEO. The hydrocortisone release profiles were analyzed using the Ritger-Peppas approximation. An anomalous release behaviour (values of n higher than 0.5) was found for most of the analyzed samplesWe acknowledge the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT), México, Ministerio de Ciencia e Innovación (MAT2014-52644-R), Spain, and the Universidad de Guanajuato, México. Authors are indebted to Dr. Guillermo Mendoza-Diaz (Universidad de Guanajuato) for his helpful discussions. The authors thank Salvador López Morales (Instituto de Investigaciones en Materiales, UNAM) for GPC-MALLS analysis. The authors wish to thank the Directorate for Research Support and Postgraduate Programs at the University of Guanajuato for their support in the editing of the English-language version of this article.Peer Reviewe

    Influence of Body Composition on Cardiorespiratory Fitness and Metabolic Markers in Physically Inactive Individuals with Insulin Resistance: An Observational Study

    No full text
    The aim of this study was to determine body composition influence on cardiorespiratory fitness and metabolic markers in physically inactive individuals with insulin resistance (IR). Nineteen overweight and obese (body mass index [BMI] 25.0–29.9 kg·m−2; ≥ 30.0 kg·m−2, respectively) patients diagnosed with IR (5 men and 14 women; age: 32.74 ± 10.07 years; BMI: 32.5 ± 4.60 kg·m−2). The body composition included BMI, fat mass, and fat-free mass. Cardiorespiratory fitness was measured by maximal oxygen uptake (VO2max). Metabolic markers included maximal fat oxidation, fasting glucose, and insulin. IR was determined by homeostatic model assessment (HOMA-IR). The results of the partial correlations (i.e., body mass, age, and sex) reported that fat-free mass, fat mass, and BMI were significantly correlated with VO2max. Additionally, the multiple linear regression model indicated that fat-free mass and BMI explained the variance of VO2max by 89%. However, no substantial correlations were reported between fat mass or fat-free mass with HOMA-IR, fasting glucose, or insulin. This study concluded that a higher percentage of fat-free mass and lower BMI is positively related to better cardiorespiratory fitness despite the IR status of the participants analyzed

    Modified starch with bis(2-hydroxyethyl) terephthalate: synthesis, characterization and elaboration of films

    No full text
    Banana starch was modified with B bis(2-hydroxyethyl) terephthalate and its instrumental characterization allowed to propose a chemical structure. In the carbon 6 (C6) of the starch the modification reactionwas carried out. The morphology of starch changes due to its chemical modification. The modified starch showed a lower crystallinity and thermal stability, compared to the native starch favoring its film formation. The electrical conductivity of the modified starch films was 2.7 times higher than that for the native starch film. The aqueous hydrolysis of the modified starch films was carried out obtaining a degradation of 77% in a determined time. Modified starch films present different mechanical properties compared to native starch film. These results have high application potential to be used in PET degradation products.We are grateful to Concejo Nacional de Ciencia yTecnología (Conacyt), Instituto de Ciencia y Tecnología de Polímeros(ICTP), Universidad del Papaloapan campus Tuxtepec, MartínezOlguiín Aldo de Jesús, Martha Ferrer Guadalupe and Martha RocioValencia Estacio for their assistance on this article

    Modification of banana starch (Musa paradisiaca L.) with polyethylene terephthalate: Virgin and bottle waste

    No full text
    Chemical modification of banana starch (Musa paradisiaca L.) with the degradation products of virgin and bottle waste of polyethylene terephthalate was carried out in situ. The modified starch was characterized by FTIR and NMR, which allowed proposing three chemical structures. SEM micrographs showed that the morphology of the modified starch granule is directly related with mass ratio of Starch/PET and type of PET used in the reaction. The crystallinity of the modified starch decreased up to 92.6% and 62.5% using bottle waste and virgin PET, respectively, according to XRD diffractograms. TGA analysis showed that the starch degradation temperature decreased by 12 ¿C. Modified starch films were elaborate and its electrical conductivity was found to be 2.9 times compared to that of native starch. The starch/PET film presented the highest value in the mechanical property of elongation at break compared to the starch-only film. The modified starch film was degraded above 80% by aqueous hydrolysis.We are grateful to Concejo Nacional de Ciencia y Tecnología (Con-acyt), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Universidad del Papaloapan campus Tuxtepec, Martínez Olguin Aldo de Jesús, Martha Ferrer Guadalupe and Martha Rocio Valencia Estacio for their assistance on this article
    corecore