480 research outputs found
Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach
International audienceWe present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquad-rina pachyderma, Neogloboquadrina incompta, Neoglobo-quadrina dutertrei, Globigerina bulloides, Globigeri-noides ruber, Globigerinoides sacculifer, Globigerinella si-phonifera and Orbulina universa). By using the main physiological rates of foraminifers (nutrition, respiration, symbi-otic photosynthesis), this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via Chlorophyll-a concentration) was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual growth and population abundance. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer species with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). Compared to core tops observations, the model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when using either satellite data either PISCES results. This model allows prediction of the season and water depth at which each species has its maximum abundance potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle
The wonderful complexity of the Mira AB system
We have mapped the CO(3-2) line emission around the Mira AB system at 0.5
resolution using the Atacama Large Millimeter/submillimeter Array (ALMA). The
CO map shows amazing complexity. The circumstellar gas has been shaped by
different dynamical actors during the evolution of the system and several
morphological components can be identified. The companion is marginally
resolved in continuum emission and is currently at 0.4870.006 separation.
In the main line component, centered on the stellar velocity, spiral arcs
around Mira A are found. The spiral appears to be relatively flat and oriented
in the orbital plane. An accretion wake behind the companion is clearly visible
and the projected arc separation is of order 5''. In the blue wing of the line
emission, offset from the main line, several large (5-10''), opposing
arcs are found. We tentatively suggest that this structure is created by the
wind of Mira B blowing a bubble in the expanding envelope of Mira A.Comment: Letter accepted in A&
Vertical distribution and respiration rates of benthic foraminifera: Contribution to aerobic remineralization in intertidal mudflats covered by Zostera noltei meadows
The present study investigates the influence of seagrass root systems on benthic hard-shelled meiofauna (foraminifera). In February and July 2011, sediment cores were collected at low tide at two sites in Arcachon lagoon, a vegetated site with Zostera noltei and a second site with bare sediments. We used the highly discriminative CellTracker™ Green fluorogenic probe technique to recognize living foraminifera and to describe foraminiferal density and diversity. Three dominant species of foraminifera were observed: Ammonia tepida, Haynesina germanica and Eggerella scabra. The two calcareous species, A. tepida and H. germanica, were preferentially found in the upper half to 1 cm of the sediment. At the vegetated site, these two species had a slightly deeper microhabitat. In the literature, both species have been described alive in much deeper sediment layers, possibly due to false positives from the Rose Bengal staining method. These two species also showed 1) higher densities at the site with Z. noltei, 2) a higher density in February when conditions were supposed optimal due to a microphytobenthos bloom, and 3) dissolved calcitic shells in July, probably resulting from a lower pH. The agglutinated species E. scabra was present alive down to at least 7 cm depth. E. scabra showed high densities in the anoxic part of the sediment at both the vegetated and bare sites, with a substantially higher density in summer at the site with bare sediments. Its presence at depth may be related to its trophic requirements; this species could be less dependent on labile organic matter than A. tepida and H. germanica. On this intertidal mudflat, the foraminiferal contribution to aerobic carbon remineralization, based on respiration rate measurements, can account for up to 7% of the diffusive oxygen uptake, almost five times more than the maximum contribution recorded in open marine environments (300 m depth) in the Bay of Biscay
s-Process Nucleosynthesis in Carbon Stars
We present the first detailed and homogeneous analysis of the s-element
content in Galactic carbon stars of N-type. Abundances of Sr,Y, Zr (low-mass
s-elements, or ls) and of Ba, La, Nd, Sm and Ce (high-mass s-elements, hs) are
derived using the spectral synthesis technique from high-resolution spectra.
The N-stars analyzed are of nearly solar metallicity and show moderate
s-element enhancements, similar to those found in S stars, but smaller than
those found in the only previous similar study (Utsumi 1985), and also smaller
than those found in supergiant post-AGB stars. This is in agreement with the
present understanding of the envelope s-element enrichment in giant stars,
which is increasing along the spectral sequence M-->MS-->S-->SC-->C during the
AGB phase. We compare the observational data with recent -process
nucleosynthesis models for different metallicities and stellar masses. Good
agreement is obtained between low mass AGB star models (M < 3 M_o) and
s-elements observations. In low mass AGB stars, the 13C(alpha, n)16O reaction
is the main source of neutrons for the s-process; a moderate spread, however,
must exist in the abundance of 13C that is burnt in different stars. By
combining information deriving from the detection of Tc, the infrared colours
and the theoretical relations between stellar mass, metallicity and the final
C/O ratio, we conclude that most (or maybe all) of the N-stars studied in this
work are intrinsic, thermally-pulsing AGB stars; their abundances are the
consequence of the operation of third dredge-up and are not to be ascribed to
mass transfer in binary systems.Comment: 31 pages, 10 figures, 6 tables. Accepted in Ap
The temperature and chronology of heavy-element synthesis in low-mass stars
Roughly half of the heavy elements (atomic mass greater than that of iron)
are believed to be synthesized in the late evolutionary stages of stars with
masses between 0.8 and 8 solar masses. Deep inside the star, nuclei (mainly
iron) capture neutrons and progressively build up (through the
slow-neutron-capture process, or s-process) heavier elements that are
subsequently brought to the stellar surface by convection. Two neutron sources,
activated at distinct temperatures, have been proposed: 13C and 22Ne, each
releasing one neutron per alpha-particle (4He) captured. To explain the
measured stellar abundances, stellar evolution models invoking the 13C neutron
source (which operates at temperatures of about one hundred million kelvin) are
favoured. Isotopic ratios in primitive meteorites, however, reflecting
nucleosynthesis in the previous generations of stars that contributed material
to the Solar System, point to higher temperatures (more than three hundred
million kelvin), requiring at least a late activation of 22Ne. Here we report a
determination of the s-process temperature directly in evolved low-mass giant
stars, using zirconium and niobium abundances, independently of stellar
evolution models. The derived temperature supports 13C as the s-process neutron
source. The radioactive pair 93Zr-93Nb used to estimate the s-process
temperature also provides, together with the pair 99Tc-99Ru, chronometric
information on the time elapsed since the start of the s-process, which we
determine to be one million to three million years.Comment: 30 pages, 10 figure
Simulating the growth and distribution of planktic foraminifer using an ecophysiological multi-species model
We present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquadrina pachyderma, Neogloboquadrina incompta, Neogloboquadrina dutertrei, Globigerina bulloides, Globigerinoides ruber, Globigerinoides sacculifer, Globigerinella siphonifera and Orbulina universa). By using the main physiological rates of foraminifers (nutrition, respiration, symbiotic photosynthesis), this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via chl-a concentration) was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual and assemblage growth rates. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). The model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when compared to core tops observations both using satellite and PISCES data. This model allows prediction of the season and water depth at which each species has its highest growth potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle
Mass Transfer by Stellar Wind
I review the process of mass transfer in a binary system through a stellar
wind, with an emphasis on systems containing a red giant. I show how wind
accretion in a binary system is different from the usually assumed Bondi-Hoyle
approximation, first as far as the flow's structure is concerned, but most
importantly, also for the mass accretion and specific angular momentum loss.
This has important implications on the evolution of the orbital parameters. I
also discuss the impact of wind accretion, on the chemical pollution and change
in spin of the accreting star. The last section deals with observations and
covers systems that most likely went through wind mass transfer: barium and
related stars, symbiotic stars and central stars of planetary nebulae (CSPN).
The most recent observations of cool CSPN progenitors of barium stars, as well
as of carbon-rich post-common envelope systems, are providing unique
constraints on the mass transfer processes.Comment: Chapter 7, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Biaxial strain tuning of exciton energy and polarization in monolayer WS2
We perform micro-photoluminescence and Raman experiments to examine the
impact of biaxial tensile strain on the optical properties of WS2 monolayers. A
strong shift on the order of -130 meV per % of strain is observed in the
neutral exciton emission at room temperature. Under near-resonant excitation we
measure a monotonic decrease in the circular polarization degree under applied
strain. We experimentally separate the effect of the strain-induced energy
detuning and evaluate the pure effect coming from biaxial strain. The analysis
shows that the suppression of the circular polarization degree under biaxial
strain is related to an interplay of energy and polarization relaxation
channels as well as to variations in the exciton oscillator strength affecting
the long-range exchange interaction.Comment: 29 pages, 11 figure
- …