59 research outputs found

    Enzyme Promiscuity in Enolase Superfamily. Theoretical Study of o-Succinylbenzoate Synthase Using QM/MM Methods

    Get PDF
    The promiscuous activity of the enzyme o-succinylbenzoate synthase (OSBS) from the actinobacteria Amycolatopsis is investigated by means of QM/MM methods, using both density functional theory and semiempirical Hamiltonians. This enzyme catalyzes not only the dehydration of 2-succinyl-6R-hydroxy-2,4-cyclohexadiene-1R-carboxylate but also catalyzes racemization of different acylamino acids, with N-succinyl-R-phenylglycine being the best substrate. We investigated the molecular mechanisms for both reactions exploring the potential energy surface. Then, molecular dynamics simulations were performed to obtain the free energy profiles and the averaged interaction energies of enzymatic residues with the reacting system. Our results confirm the plausibility of the reaction mechanisms proposed in the literature, with a good agreement between theoretical and experimentally derived activation free energies. Our simulations unravel the role played by the different residues in each of the two possible reactions. The presence of flexible loops in the active site and the selection of structural modifications in the substrate seem to be key elements to promote the promiscuity of this enzyme.This work was supported by the Spanish Ministerio de Economia y Competitividad project CTQ2012-36253-C03-03 ́ and FEDER funds. K.S. thanks the Polish National Science Center (NCN) for Grant 2011/02/A/ST4/00246. The authors acknowledge computational facilities of the Servei d’Informatica ̀ de la Universitat de Valencia in the ̀ “Tirant” supercomputer, which is part of the Spanish Supercomputing Network

    The Contribution of Coevolving Residues to the Stability of KDO8P Synthase

    Get PDF
    The evolutionary tree of 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase (KDO8PS), a bacterial enzyme that catalyzes a key step in the biosynthesis of bacterial endotoxin, is evenly divided between metal and non-metal forms, both having similar structures, but diverging in various degrees in amino acid sequence. Mutagenesis, crystallographic and computational studies have established that only a few residues determine whether or not KDO8PS requires a metal for function. The remaining divergence in the amino acid sequence of KDO8PSs is apparently unrelated to the underlying catalytic mechanism.The multiple alignment of all known KDO8PS sequences reveals that several residue pairs coevolved, an indication of their possible linkage to a structural constraint. In this study we investigated by computational means the contribution of coevolving residues to the stability of KDO8PS. We found that about 1/4 of all strongly coevolving pairs probably originated from cycles of mutation (decreasing stability) and suppression (restoring it), while the remaining pairs are best explained by a succession of neutral or nearly neutral covarions.Both sequence conservation and coevolution are involved in the preservation of the core structure of KDO8PS, but the contribution of coevolving residues is, in proportion, smaller. This is because small stability gains or losses associated with selection of certain residues in some regions of the stability landscape of KDO8PS are easily offset by a large number of possible changes in other regions. While this effect increases the tolerance of KDO8PS to deleterious mutations, it also decreases the probability that specific pairs of residues could have a strong contribution to the thermodynamic stability of the protein

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Linking electrostatic effects and protein motions in enzymatic catalysis. A theoretical analysis of catechol o-methyltransferase

    No full text
    The role of protein motions in enzymatic catalysis is the subject of a hot scientific debate. We here propose the use of an explicit solvent coordinate to analyze the impact of environmental motions during the reaction process. The example analyzed here is the reaction catalyzed by catechol O-methyltransferase, a methyl transfer reaction from S-adenosylmethionine (SAM) to the nucleophilic oxygen atom of catecholate. This reaction proceeds from a charged reactant to a neutral product, and then a large electrostatic coupling with the environment could be expected. By means of a two-dimensional free energy surface, we show that a large fraction of the environmental motions needed to attain the transition state happens during the first stages of the reaction because most of the environmental motions are slower than changes in the substrate. The incorporation of the solvent coordinate in the definition of the transition state improves the transmission coefficient and the committor histogram in solution, while the changes are much less significant in the enzyme. The equilibrium solvation approach seems then to work better in the enzyme than in aqueous solution because the enzyme provides a preorganized environment where the reaction takes place

    A Novel Strategy to Study Electrostatic Effects in Chemical Reactions: Differences between the Role of Solvent and the Active Site of Chalcone Isomerase in a Michael Addition

    No full text
    The electrostatic behavior of active site residues in enzyme catalysis is quite different from that of water molecules in solution. To highlight the electrostatic differences between both environments, we propose a QM/MM strategy to study the role of the environment in chemical reactions. The novelty of the present communication is that free energy surfaces are generated by means of two distinguished reaction coordinates: a solute coordinate and the electrostatic potential created by the environment. This is applied to analyze the origin of catalysis in the transformation of a chalcone into a flavanone, a Michael addition that requires the desolvation of the nucleophile
    corecore