74 research outputs found

    Bureaucratic representation and gender mainstreaming in international organizations: evidence from the World Bank

    Get PDF
    How does the representation of women in international organizations affect the implementation of gender mainstreaming policies? Many international organizations have adopted policies to prevent gender discrimination in their operations, but their implementation is often lackluster. We argue that these shortcomings appear due to a combination of institutional incentives and an underrepresentation of women in their staff. We test the argument in the case of the World Bank, drawing on highly disaggregated staffing data, an instrumental variable strategy, and an elite survey experiment. Our results show that most staff incorporate at least shallow gender mainstreaming in their projects. Deeper implementation of gender mainstreaming is more likely when women staff supervise projects, hold positions of authority, and are more represented as coworkers. These results contribute to understanding the disconnects between talk and action on mainstreaming policies and inform debates on representation in global governance

    Connectivity between white shark populations off Central California, USA and Guadalupe Island, Mexico

    Get PDF
    Marine animals often move beyond national borders and exclusive economic zones resulting in a need for trans-boundary management spanning multiple national jurisdictions. Highly migratory fish vulnerable to over-exploitation require protections at international level, as exploitation practices can be disparate between adjacent countries and marine jurisdictions. In this study we collaboratively conducted an analysis of white shark connectivity between two main aggregation regions with independent population assessment and legal protection programs; one off central California, USA and one off Guadalupe Island, Mexico. We acoustically tagged 326 sub-adult and adult white sharks in central California (n=210) and in Guadalupe Island (n=116) with acoustic transmitters between 2008-2019. Of the 326 tagged white sharks, 30 (9.20%) individuals were detected at both regions during the study period. We used a Bayesian implementation of logistic regression with a binomial distribution to estimate the effect of sex, maturity, and tag location to the response variable of probability of moving from one region to the other. While nearly one in ten individuals in our sample were detected in both regions over the study period, the annual rate of trans-regional movement was low (probability of movement = 0.015 yr-1, 95% credible interval = 0.002, 0.061). Sub-adults were more likely than adults to move between regions and sharks were more likely to move from Guadalupe Island to central California, however, sex, and year were not important factors influencing movement. This first estimation of demographic-specific trans-regional movement connecting US and Mexico aggregations with high seasonal site fidelity represents an important step to future international management and assessment of the northeastern Pacific white shark population as a whole

    Cognitive and brain reserve predict decline in adverse driving behaviors among cognitively normal older adults

    Get PDF
    Daily driving is a multi-faceted, real-world, behavioral measure of cognitive functioning requiring multiple cognitive domains working synergistically to complete this instrumental activity of daily living. As the global population of older adult continues to grow, motor vehicle crashes become more frequent among this demographic. Cognitive reserve (CR) is the brain\u27s adaptability or functional robustness despite damage, while brain reserve (BR) refers the structural, neuroanatomical resources. This study examined whether CR and BR predicted changes in adverse driving behaviors in cognitively normal older adults. Cognitively normal older adults (Clinical Dementia Rating 0) were enrolled from longitudinal studies at the Knight Alzheimer\u27s Disease Research Center at Washington University. Participants

    Migratory shorebird adheres to Bergmann’s Rule by responding to environmental conditions through the annual lifecycle

    Get PDF
    The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long-term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non-breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann’s Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non-breeding ranges, which is consistent with predictions of Bergmann’s Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle

    Migratory shorebird adheres to Bergmann’s Rule by responding to environmental conditions through the annual lifecycle

    Get PDF
    The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long-term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non-breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann’s Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non-breeding ranges, which is consistent with predictions of Bergmann’s Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle

    Connectivity between white shark populations off Central California, USA and Guadalupe Island, Mexico

    Get PDF
    Marine animals often move beyond national borders and exclusive economic zones resulting in a need for trans-boundary management spanning multiple national jurisdictions. Highly migratory fish vulnerable to over-exploitation require protections at international level, as exploitation practices can be disparate between adjacent countries and marine jurisdictions. In this study we collaboratively conducted an analysis of white shark connectivity between two main aggregation regions with independent population assessment and legal protection programs; one off central California, USA and one off Guadalupe Island, Mexico. We acoustically tagged 326 sub-adult and adult white sharks in central California (n=210) and in Guadalupe Island (n=116) with acoustic transmitters between 2008-2019. Of the 326 tagged white sharks, 30 (9.20%) individuals were detected at both regions during the study period. We used a Bayesian implementation of logistic regression with a binomial distribution to estimate the effect of sex, maturity, and tag location to the response variable of probability of moving from one region to the other. While nearly one in ten individuals in our sample were detected in both regions over the study period, the annual rate of trans-regional movement was low (probability of movement = 0.015 yr-1, 95% credible interval = 0.002, 0.061). Sub-adults were more likely than adults to move between regions and sharks were more likely to move from Guadalupe Island to central California, however, sex, and year were not important factors influencing movement. This first estimation of demographic-specific trans-regional movement connecting US and Mexico aggregations with high seasonal site fidelity represents an important step to future international management and assessment of the northeastern Pacific white shark population as a whole

    Trapping virtual pores by crystal retro-engineering

    Get PDF
    Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating

    Emergent research and priorities for shark and ray conservation

    Get PDF
    Over the past 4 decades there has been a growing concern for the conservation status of elasmobranchs (sharks and rays). In 2002, the first elasmobranch species were added to Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Less than 20 yr later, there were 39 species on Appendix II and 5 on Appendix I. Despite growing concern, effective conservation and management remain challenged by a lack of data on population status for many species, human−wildlife interactions, threats to population viability, and the efficacy of conservation approaches. We surveyed 100 of the most frequently published and cited experts on elasmobranchs and, based on ranked responses, prioritized 20 research questions on elasmobranch conservation. To address these questions, we then convened a group of 47 experts from 35 institutions and 12 countries. The 20 questions were organized into the following broad categories: (1) status and threats, (2) population and ecology, and (3) conservation and management. For each section, we sought to synthesize existing knowledge, describe consensus or diverging views, identify gaps, and suggest promising future directions and research priorities. The resulting synthesis aggregates an array of perspectives on emergent research and priority directions for elasmobranch conservation

    Seven Sisters: a mission to study fundamental plasma physical processes in the solar wind and a pathfinder to advance space weather prediction

    Get PDF
    This paper summarizes the Seven Sisters solar wind mission concept and the outstanding science questions motivating the mission science objectives. The Seven Sisters mission includes seven individual spacecraft designed to uncover fundamental physical processes in the solar wind and provides up to ≈ 2 days of advanced space weather warnings for 550 Earth days during the mission. The mission will collect critical measurements of the thermal and suprathermal plasma and magnetic fields, utilizing, for the first time, Venus–Sun Lagrange points. The multi-spacecraft configuration makes it possible to distinguish between spatial and temporal changes, define gradients, and quantify cross-scale transport in solar wind structures. Seven Sisters will determine the 3-D structure of the solar wind and its transient phenomena and their evolution in the inner heliosphere. Data from the Seven Sisters mission will allow the identification of physical processes and the quantification of the relative contribution of different mechanisms responsible for suprathermal particle energization in the solar wind
    • …
    corecore