18 research outputs found

    Risk factors for developing ventilator-associated lower respiratory tract infection in patients with severe COVID-19:a multinational, multicentre study, prospective, observational study

    Get PDF
    Around one-third of patients diagnosed with COVID-19 develop a severe illness that requires admission to the Intensive Care Unit (ICU). In clinical practice, clinicians have learned that patients admitted to the ICU due to severe COVID-19 frequently develop ventilator-associated lower respiratory tract infections (VA-LRTI). This study aims to describe the clinical characteristics, the factors associated with VA-LRTI, and its impact on clinical outcomes in patients with severe COVID-19. This was a multicentre, observational cohort study conducted in ten countries in Latin America and Europe. We included patients with confirmed rtPCR for SARS-CoV-2 requiring ICU admission and endotracheal intubation. Only patients with a microbiological and clinical diagnosis of VA-LRTI were included. Multivariate Logistic regression analyses and Random Forest were conducted to determine the risk factors for VA-LRTI and its clinical impact in patients with severe COVID-19. In our study cohort of 3287 patients, VA-LRTI was diagnosed in 28.8% [948/3287]. The cumulative incidence of ventilator-associated pneumonia (VAP) was 18.6% [610/3287], followed by ventilator-associated tracheobronchitis (VAT) 10.3% [338/3287]. A total of 1252 bacteria species were isolated. The most frequently isolated pathogens were Pseudomonas aeruginosa (21.2% [266/1252]), followed by Klebsiella pneumoniae (19.1% [239/1252]) and Staphylococcus aureus (15.5% [194/1,252]). The factors independently associated with the development of VA-LRTI were prolonged stay under invasive mechanical ventilation, AKI during ICU stay, and the number of comorbidities. Regarding the clinical impact of VA-LRTI, patients with VAP had an increased risk of hospital mortality (OR [95% CI] of 1.81 [1.40-2.34]), while VAT was not associated with increased hospital mortality (OR [95% CI] of 1.34 [0.98-1.83]). VA-LRTI, often with difficult-to-treat bacteria, is frequent in patients admitted to the ICU due to severe COVID-19 and is associated with worse clinical outcomes, including higher mortality. Identifying risk factors for VA-LRTI might allow the early patient diagnosis to improve clinical outcomes. Trial registration: This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Association between serum tissue inhibitor of matrix metalloproteinase-1 levels and mortality in patients with severe brain trauma injury.

    No full text
    OBJECTIVE: Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) play a role in neuroinflammation after brain trauma injury (TBI). Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. METHODS: This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9 were included, while those with Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF)-alpha, and plasma levels of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. RESULTS: Non-surviving TBI patients (n = 27) showed higher serum TIMP-1 levels than survivor ones (n = 73). We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001-1.013; P = 0.03). Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02). The area under the curve (AUC) for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624-0.844; P<0.001). An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. CONCLUSIONS: The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a prognostic biomarker of mortality in TBI patients

    Dexamethasone as risk-factor for ICU-acquired respiratory tract infections in severe COVID-19.

    No full text
    Dexamethasone is the only drug that has consistently reduced mortality in patients with COVID-19, especially in patients needing oxygen or invasive mechanical ventilation. However, there is a growing concern about the relation of dexamethasone with the unprecedented rates of ICU-acquired respiratory tract infections (ICU-RTI) observed in patients with severe COVID-19. This was a multicenter, prospective cohort study; conducted in ten countries in Latin America and Europe. We included patients older than 18 with confirmed SARS-CoV-2 requiring ICU admission. A multivariate logistic regression and propensity score matching (PSM) analysis was conducted to determine the relation between dexamethasone treatment and ICU-RTI. A total of 3777 patients were included. 2065 (54.7%) were treated with dexamethasone within the first 24 h of admission. After performing the PSM, patients treated with dexamethasone showed significantly higher proportions of VAP (282/1652 [17.1%] Vs. 218/1652 [13.2%], p = 0.014). Also, dexamethasone treatment was identified as an adjusted risk factor of ICU-RTI in the multivariate logistic regression model (OR 1.64; 95%CI: 1.37-1.97; p Patients treated with dexamethasone for severe COVID-19 had a higher risk of developing ICU-acquired respiratory tract infections after adjusting for days of invasive mechanical ventilation and ICU length of stay, suggesting a cautious use of this treatment

    Baseline clinical and biochemical characteristics of survivor and non-survivor patients.

    No full text
    <p>P 25–75 = percentile 25<sup>th</sup>–75<sup>th</sup>; PaO<sub>2</sub> = pressure of arterial oxygen/fraction inspired oxygen; FIO<sub>2</sub>  =  pressure of arterial oxygen/fraction inspired oxygen; ISS  =  Injury Severity Score; INR  =  international normalized ratio; aPTT  =  activated partial thromboplastin time; APACHE II  =  Acute Physiology and Chronic Health Evaluation; ICP  =  intracranial pressure; CPP  =  cerebral perfusion pressure; TIMP  =  tissue inhibitor of matrix metalloproteinase; MMP  =  matrix metalloproteinase; TNF  =  tumor necrosis factor; PAI  =  plasminogen activator inhibitor</p
    corecore