13 research outputs found

    Desarrollo de un sistema operativo para la validación estandarizada de productos globales de albedo derivados de satélite. Aplicación a SPOT/VGT, PROBA-V y Sentinel-3

    No full text
    El albedo de la superficie terrestre (SA) es una variable climática esencial (ECV), cobrando un papel relevante en el balance energético del planeta. Diferentes agencias espaciales y servicios de observación de la Tierra vienen desarrollando registros de datos climáticos (CDR) de productos de albedo a escala global, derivados con datos procedentes de sensores pasivos a bordo de satélites. Es, por ende, indispensable cuantificar de manera eficiente las incertidumbres asociadas a dichos productos de satélite, proceso que se conoce como validación. La validación también permite establecer en qué medida los productos satisfacen los requerimientos demandados por los usuarios. Por otra parte, la metodología de validación deber seguir unos protocolos y metodologías estandarizados, que ofrezcan a su vez trazabilidad y transparencia en dicho proceso. A nivel internacional, el subgrupo sobre validación de productos terrestres (LPV) del grupo de trabajo sobre calibración y validación (WGCV) del comité de satélites de observación de la Tierra (CEOS) se encarga de la coordinación de las actividades y estandarización de protocolos de validación. El CEOS/WGCV LPV establece, además, una jerarquía de cuatro niveles en función del estado de la validación de los productos dependiendo de varios aspectos como la representatividad global y temporal, el uso de protocolos estandarizados, la publicación de los resultados en revistas científicas (peer-reviewed) o la actualización de los resultados cuando la serie temporal se expande. El nivel más alto en la jerarquía (nivel 4) engloba todos estos aspectos. Todo ello motiva el objetivo principal de esta tesis, que no es otro que el diseño de un sistema operacional de validación estandarizada para llegar al nivel 4, que debe integrar las siguientes cuatro componentes: (1) registros de datos climáticos de albedo a largo plazo derivados con datos de satélite; (2) un conjunto fiable y representativo a nivel global de medidas in situ; (3) un protocolo de validación estandarizado que cuente con el acuerdo de la comunidad científica; y (4) una plataforma de validación online, de libre acceso, que genere resultados e informes de validación estandarizados y permita actualizar los resultados conforme la serie se expande. En el contexto de esta tesis se ha trabajado en cada una de estas componentes, llevando cada una al nivel requerido para formar parte del sistema. Respecto a la primera componente, se ha trabajado en la validación de los productos de albedo desarrollados en el servicio Europeo de observación de la Tierra, denominado Copernicus. Los desarrollos iniciales de los algoritmos de albedo se realizaron en el contexto de la componente global del servicio de monitorización de la superficie terrestre de Copernicus (CGLS), derivando posteriormente la producción de dichos productos al servicio de cambio climático (C3S) de Copernicus. C3S ha desarrollado la serie climática más extensa, cuya calidad e incertidumbre ha sido evaluada en esta tesis para diferentes versiones de algoritmos y sensores utilizados. Por otra parte, también se ha trabajado en el diseño del algoritmo que permite dar continuidad a la serie gracias al uso de los satélites Copernicus Sentinel-3, que ofrecen mejoras en cuanto a resolución espacial y espectral. Se han validado los productos Copernicus de albedo derivados con datos SPOT/VGT, PROBA-V y Sentintel-3/OLCI+SLSTR. • El punto de partida de esta tesis fue la validación del producto desarrollado en CGLS para la estimación del albedo a partir de datos del sensor Vegetation a bordo del minisatélite PROBA (PROBA-V) a 300 m de resolución espacial (Roujean et al., 2018). la validación de dichos productos se realizó sobre Europa, mostrando distribuciones espacial y temporalmente consistentes con los productos de NASA derivados con datos de MODIS a bordo de las plataformas Terra y Aqua (MCD43A3 C6). La validación directa sobre datos de 10 estaciones representativas mostró una incertidumbre (RMSD) de 0.03 con un sesgo medio (bias) de 0.01, mostrando discrepancias similares a las observadas en MCD43A3 C6 (RMSD=0.03, bias=0). Se demostró, por tanto, la viabilidad y utilidad del algoritmo. • En segundo lugar se realizó la validación del producto de albedo de PROBA-V versión 1 (C3S PROBA-V SA V1) que dio continuidad a la serie climática de albedo de C3S a 1 km de resolución espacial (Sánchez-Zapero et al., 2020). Por ello, dicho estudio se centró en la consistencia de los productos C3S en la transición de SPOT a PROBA, donde ambas plataformas incorporan sensores Vegetation equivalentes espectralmente (SPOT/VGT y PROBA-V). Se demostró una buena continuidad asociada al cambio de satélite (sesgo medio típicamente entre ±2%). La mayor limitación del producto de PROBA-V respecto al de SPOT/VGT fue su menor número de observaciones válidas. La comparación de C3S PROBA-V SA V1 con el producto MODIS de NASA (MCD43A3 C6) mostró también una buena consistencia, con diferencias sistemáticamente positivas de hasta el 12% (PROBA-V > MODIS). La comparación de PROBA-V con datos in situ (20 estaciones) mostró un sesgo positivo (11.5%), con una incertidumbre (RMSD ∼ 0.4) similar a la mostrada por MCD43A3 C6. • El tercer estudio (Sánchez-Zapero et al., 2023b) presenta la validación de 3 series climáticas con más de 20 años de datos usando la herramienta Surface Albedo Validation (SALVAL) desarrollada en esta tesis (componente 4 del sistema operacional). Las series climáticas investigadas fueron: la versión 2 del producto de albedo del servicio C3S denominada multi-sensor derivada a partir de datos SPOT/VGT y PROBA-V (C3S V2), el producto de NASA derivado con Terra+Aqua/MODIS (MODIS C6.1) y el producto de la Universidad de Beijing derivado también con datos MODIS (GLASS V4). Los resultados de validación demostraron que los tres productos de satélite investigados proporcionan series temporales consistentes y realistas a nivel global, mostrando ciertas discrepancias entre ellos principalmente atribuidas a los diferentes algoritmos utilizados y al tipo de sensor. • Finalmente se realizó el diseño y validación del algoritmo de albedo desarrollado para dar continuidad a la serie climática de C3S basada en SPOT/VGT y PROBA-V usando datos Copernicus Sentinel-3 a 300 m de resolución espacial (Sánchez-Zapero et al., 2023a). Dicho algoritmo realiza un uso sinérgico de datos de los sensores OCLI y SLSTR a bordo de los satélites Sentinel-3. La validación directa con datos de campo (32 estaciones) mostró resultados similares a los productos NASA MODIS (MCD43A3 C6) pero con un signo en la diferencias opuesto (ligeramente positivo en el caso de Sentinel-3), con una exactitud de 0.005 (3.7%), precisión de 0.016 (11.3%) e incertidumbre de 0.032 (22.7%). Los resultados de validación directa de Sentinel-3 mejoraron los obtenidos por su producto C3S predecesor basado en PROBA-V. C3S Sentinel-3 SA alcanzó un buen acuerdo espacial y temporal en comparación con otros productos de satélite operacionales derivados con MODIS (MCD43A3 C6) y PROBA-V (C3S PROBA-V SA V1). Se demostró, por tanto, la viabilidad del algoritmo propuesto para la continuidad del CDR del servicio C3S utilizando el uso de datos OLCI+SLSTR de Sentinel-3. La principal limitación del producto fue la subestimación del albedo en la nieve y la transición lenta entre valores bajos y altos en eventos de nieve. Dicha limitación proviene de los datos de entrada (reflectividad de la superficie) proporcionados en CGLS, que usa el clasificador IdePix de ESA, donde se confunden los valores de nieve con valores de nube, enmascarando y filtrando dichos valores. La segunda componente hace referencia a un conjunto fiable y representativo de medidas in situ a nivel global. Se ha generado una base de datos de medidas de campo de albedo denominada Representativeness-Evaluated Albedo Stations (REALS), integrando los datos procedentes de redes existentes de medidas tales como BSRN, FLUXNET, NEON, EFDC, ICOS o TERN. Se ha evaluado la representatividad espacial de la medida asociada a la estación con el objetivo de determinar si el valor medido por la torre (footprint) es representativo a la resolución espacial efectiva de los píxeles de satélite de interés (típicamente de 300 m a 1 km). La tercera componente implica el desarrollo de unos protocolos y metodologías estandarizados, bajo el consenso de la comunidad científica, que ofrezcan a su vez trazabilidad y transparencia en el proceso de validación. En el desarrollo de esta tesis se ha ido elaborando una metodología de validación en colaboración con el grupo de trabajo del CEOS/WGCV LPV por lo que dicha metodología no sólo es consistente con la buenas prácticas del CEOS/WGCV LPV sino que también ha contribuido a definir criterios y métricas del protocolo de validación del CEOS/WGCV LPV. Se presentan los dos métodos principales y sus particularidades: i) la validación directa, que hace referencia a la comparación de estimaciones de satélite con datos medidos procedentes de estaciones terrestres; y ii) la validación indirecta, también conocida como intercomparación de productos. Se ha definido además un muestreo de 720 localizaciones para la intercomparación de productos (LANDVAL), que ha sido definido sobre sitios homogéneos con el objetivo de ser representativo a nivel global en cuando a distribución continental y por tipo de bioma. Finalmente, se ha culminado la integración en un sistema operacional con el desarrollo de una plataforma de validación online (SALVAL) que genera resultados de validación estandarizados. La herramienta SALVAL está diseñada para permitir a los productos de albedo alcanzar el nivel máximo (4) en la jerarquía del CEOS/WGCV LPV, contando a su vez con una interfaz amigable para el usuario y permitiendo un ejercicio interactivo de validación que puede ser configurado conforme a los requerimientos definidos por el propio usuario. Como conclusión, se ha conseguido llevar cada una de las componentes de validación (series climáticas de albedo, base de datos de medidas in situ, metodología de validación y herramienta online) al nivel necesario para desarrollar un sistema operacional de validación estandarizada. Se han validado, además, los productos de albedo desarrollados en los servicios Copernicus CGLS y C3S con los sensores pasivos a bordo de los satélites SPOT, PROBA y Sentinel-3

    GEOV2 : Improved smoothed and gap filled time series of LAI, FAPAR and FCover 1 km Copernicus Global Land products

    Get PDF
    Essential vegetation variables including leaf area index (LAI), fraction of absorbed photosynthetic active radiation (FAPAR) and fraction of green vegetation cover (FCover) are produced and distributed in the Copernicus Global Land Service. We describe here the algorithmic principles, consistency and improvements of GEOV2, Version 2 of LAI, FAPAR and FCover products derived from SPOT/VGT (1999-2013) and PROBA-V data (2014-2020) at 1 km resolution, as compared to the earlier version GEOV1. GEOV2 is based on neural networks first trained with CYCLOPES and MODIS products to estimate LAI, FAPAR and FCover from daily top of canopy reflectance. Temporal techniques are then applied to filter, smooth, fill gaps and get a composited value every 10 days. Results show that GEOV2 products keep a high consistency with GEOV1 (90% of residuals within ± max(0.5, 20%) LAI, and 80% within ± max(0.05, 10%) FAPAR / FCover) and improves in terms of product completeness (<1% of missing data), temporal consistency, consistency across variables and accuracy

    Quality assessment of PROBA-V LAI, fAPAR and fCOVER collection 300 m products of copernicus global land service

    Get PDF
    Altres ajuts: this research was funded by European Commission/Joint Research Centre under the Framework Service Contract N◦199494 of the Copernicus Global Land Service.The Copernicus Global Land Service (CGLS) provides global time series of leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fAPAR) and fraction of vegetation cover (fCOVER) data at a resolution of 300 m and a frequency of 10 days. We performed a quality assessment and validation of Version 1 Collection 300 m products that were consistent with the guidelines of the Land Product Validation (LPV) subgroup of the Committee on Earth Observation System (CEOS) Working Group on Calibration and Validation (WGCV). The spatiotemporal patterns of Collection 300 m V1 LAI, fAPAR and fCOVER products are consistent with CGLS Collection 1 km V1, Collection 1 km V2 and Moderate Resolution Imagery Spectroradiometer Collection 6 (MODIS C6) products. The Collection 300 m V1 products have good precision and smooth temporal profiles, and the interannual variations are consistent with similar satellite products. The accuracy assessment using ground measurements mainly over crops shows an overall root mean square deviation of 1.01 (44.3%) for LAI, 0.12 (22.2%) for fAPAR and 0.21 (42.6%) for fCOVER, with positive mean biases of 0.36 (15.5%), 0.05 (10.3%) and 0.16 (32.2%), respectively. The products meet the CGLS user accuracy requirements in 69.1%, 62.5% and 29.7% of the cases for LAI, fAPAR and fCOVER, respectively. The CGLS will continue the production of Collection 300 m V1 LAI, fAPAR and fCOVER beyond the end of the PROBA-V mission by using Sentinel-3 OLCI as input data

    GEOV2: Improved smoothed and gap filled time series of LAI, FAPAR and FCover 1 km Copernicus Global Land products

    No full text
    Essential vegetation variables including leaf area index (LAI), fraction of absorbed photosynthetic active radiation (FAPAR) and fraction of green vegetation cover (FCover) are produced and distributed in the Copernicus Global Land Service. We describe here the algorithmic principles, consistency and improvements of GEOV2, Version 2 of LAI, FAPAR and FCover products derived from SPOT/VGT (1999–2013) and PROBA-V data (2014–2020) at 1 km resolution, as compared to the earlier version GEOV1. GEOV2 is based on neural networks first trained with CYCLOPES and MODIS products to estimate LAI, FAPAR and FCover from daily top of canopy reflectance. Temporal techniques are then applied to filter, smooth, fill gaps and get a composited value every 10 days. Results show that GEOV2 products keep a high consistency with GEOV1 (90% of residuals within ± max(0.5, 20%) LAI, and 80% within ± max(0.05, 10%) FAPAR / FCover) and improves in terms of product completeness (<1% of missing data), temporal consistency, consistency across variables and accuracy

    Climate Data Records of Vegetation Variables from Geostationary SEVIRI/MSG Data: Products, Algorithms and Applications

    No full text
    The scientific community requires long-term data records with well-characterized uncertainty and suitable for modeling terrestrial ecosystems and energy cycles at regional and global scales. This paper presents the methodology currently developed in EUMETSAT within its Satellite Application Facility for Land Surface Analysis (LSA SAF) to generate biophysical variables from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board MSG 1-4 (Meteosat 8-11) geostationary satellites. Using this methodology, the LSA SAF generates and disseminates at a time a suite of vegetation products, such as the leaf area index (LAI), the fraction of the photosynthetically active radiation absorbed by vegetation (FAPAR) and the fractional vegetation cover (FVC), for the whole Meteosat disk at two temporal frequencies, daily and 10-days. The FVC algorithm relies on a novel stochastic spectral mixture model which addresses the variability of soils and vegetation types using statistical distributions whereas the LAI and FAPAR algorithms use statistical relationships general enough for global applications. An overview of the LSA SAF SEVIRI/MSG vegetation products, including expert knowledge and quality assessment of its internal consistency is provided. The climate data record (CDR) is freely available in the LSA SAF, offering more than fifteen years (2004-present) of homogeneous time series required for climate and environmental applications. The high frequency and good temporal continuity of SEVIRI products addresses the needs of near-real-time users and are also suitable for long-term monitoring of land surface variables. The study also evaluates the potential of the SEVIRI/MSG vegetation products for environmental applications, spanning from accurate monitoring of vegetation cycles to resolving long-term changes of vegetation

    Surface ALbedo VALidation (SALVAL) Platform: Towards CEOS LPV Validation Stage 4—Application to Three Global Albedo Climate Data Records

    No full text
    The Surface ALbedo VALidation (SALVAL) online platform is designed to allow producers of satellite-based albedo products to move to operational validation systems. The SALVAL tool integrates long-term satellite products, global in situ datasets, and community-agreed-upon validation protocols into an online and interactive platform. The SALVAL tool, available on the ESA Cal/Val portal, was developed by EOLAB under the framework outlined by the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) Land Product Validation (LPV) subgroup, and provides transparency, consistency, and traceability to the validation process. In this demonstration, three satellite-based albedo climate data records from different operational services were validated and intercompared using the SALVAL platform: (1) the Climate Change Service (C3S) multi-sensor product, (2) the NASA MODIS MCD43A3 product (C6.1) and (3) Beijing Normal University’s Global LAnd Surface Satellites (GLASS) version 4 products. This work demonstrates that the three satellite albedo datasets enable long-term reliable and consistent retrievals at the global scale, with some discrepancies between them associated with the retrieval processing chain. The three satellite albedo products show similar uncertainties (RMSD = 0.03) when comparing the best quality retrievals with ground measurements. The SALVAL platform has proven to be a useful tool to validate and intercompare albedo datasets, allowing them to reach stage 4 of the CEOS LPV validation hierarchy

    Surface Albedo Retrieval from 40-Years of Earth Observations through the EUMETSAT/LSA SAF and EU/C3S Programmes: The Versatile Algorithm of PYALUS

    No full text
    Land surface albedo quantifies the fraction of the sunlight reflected by the surface of the Earth. This article presents the algorithm concepts for the remote sensing of this variable based on the heritage of several developments which were performed at M&eacute;teo France over the last decade and described in several papers by Carrer et al. The scientific algorithm comprises four steps: an atmospheric correction, a sensor harmonisation (optional), a BRDF (Bidirectional Reflectance Distribution Function) inversion, and the albedo calculation. At the time being, the method has been applied to 11 sensors in the framework of two European initiatives (Satellite Application Facility on Land Surface Analysis&mdash;LSA SAF, and Copernicus Climate Change Service&mdash;C3S): NOAA-7-9-11-14-16-17/AVHRR2-3, SPOT/VGT1-2, Metop/AVHRR-3, PROBA-V, and MSG/SEVIRI. This work leads to a consistent archive of almost 40 years of satellite-derived albedo data (available in 2020). From a single sensor, up to three different albedo products with different characteristics have been developed to address the requirements of both, near real-time (NRT) (weather prediction with a demand of timeliness of 1 h) and climate communities. The evaluation of the algorithm applied to different platforms was recently made by Lellouch et al. and S&aacute;nchez Zapero et al. in 2020 which can be considered as companion papers. After a summary of the method for the retrieval of these surface albedos, this article describes the specificities of each retrieval, lists the differences, and discusses the limitations. The plan of continuity with the next European satellite missions and perspectives of improvements are introduced. For example, Metop/AVHRR-3 albedo will soon become the medium resolution sensor product with the longest NRT data record, since MODIS is approaching the end of its life-cycle. Additionally, Metop-SG/METimage will ensure its continuity thanks to consistent production of data sets guaranteed till 2050 by the member states of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). In the end, the common strategy which we proposed through the different programmes may offer an unprecedented opportunity to study the temporal trends affecting surface properties and to analyse human-induced climate change. Finally, the access to the source code (called PYALUS) is provided through an open access platform in order to share with the community the expertise on the satellite retrieval of this variable

    Surface Albedo Retrieval from 40-Years of Earth Observations through the EUMETSAT/LSA SAF and EU/C3S Programmes: The Versatile Algorithm of PYALUS

    No full text
    Land surface albedo quantifies the fraction of the sunlight reflected by the surface of the Earth. This article presents the algorithm concepts for the remote sensing of this variable based on the heritage of several developments which were performed at Méteo France over the last decade and described in several papers by Carrer et al. The scientific algorithm comprises four steps: an atmospheric correction, a sensor harmonisation (optional), a BRDF (Bidirectional Reflectance Distribution Function) inversion, and the albedo calculation. At the time being, the method has been applied to 11 sensors in the framework of two European initiatives (Satellite Application Facility on Land Surface Analysis—LSA SAF, and Copernicus Climate Change Service—C3S): NOAA-7-9-11-14-16-17/AVHRR2-3, SPOT/VGT1-2, Metop/AVHRR-3, PROBA-V, and MSG/SEVIRI. This work leads to a consistent archive of almost 40 years of satellite-derived albedo data (available in 2020). From a single sensor, up to three different albedo products with different characteristics have been developed to address the requirements of both, near real-time (NRT) (weather prediction with a demand of timeliness of 1 h) and climate communities. The evaluation of the algorithm applied to different platforms was recently made by Lellouch et al. and Sánchez Zapero et al. in 2020 which can be considered as companion papers. After a summary of the method for the retrieval of these surface albedos, this article describes the specificities of each retrieval, lists the differences, and discusses the limitations. The plan of continuity with the next European satellite missions and perspectives of improvements are introduced. For example, Metop/AVHRR-3 albedo will soon become the medium resolution sensor product with the longest NRT data record, since MODIS is approaching the end of its life-cycle. Additionally, Metop-SG/METimage will ensure its continuity thanks to consistent production of data sets guaranteed till 2050 by the member states of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). In the end, the common strategy which we proposed through the different programmes may offer an unprecedented opportunity to study the temporal trends affecting surface properties and to analyse human-induced climate change. Finally, the access to the source code (called PYALUS) is provided through an open access platform in order to share with the community the expertise on the satellite retrieval of this variable

    Fiducial reference measurements for vegetation bio-geophysical variables: An end-to-end uncertainty evaluation framework

    Get PDF
    With a wide range of satellite-derived vegetation bio-geophysical products now available to users, validation efforts are required to assess their accuracy and fitness for purpose. Substantial progress in the validation of such products has been made over the last two decades, but quantification of the uncertainties associated with in situ reference measurements is rarely performed, and the incorporation of uncertainties within upscaling procedures is cursory at best. Since current validation practices assume that reference data represent the truth, our ability to reliably demonstrate compliance with product uncertainty requirements through conformity testing is limited. The Fiducial Reference Measurements for Vegetation (FRM4VEG) project, initiated by the European Space Agency, is aiming to address this challenge by applying metrological principles to vegetation and surface reflectance product validation. Following FRM principles, and in accordance with the International Standards Organisation’s (ISO) Guide to the Expression of Uncertainty in Measurement (GUM), for the first time, we describe an end-to-end uncertainty evaluation framework for reference data of two key vegetation bio-geophysical variables: the fraction of absorbed photosynthetically active radiation (FAPAR) and canopy chlorophyll content (CCC). The process involves quantifying the uncertainties associated with individual in situ reference measurements and incorporating these uncertainties within the upscaling procedure (as well as those associated with the high-spatial-resolution imagery used for upscaling). The framework was demonstrated in two field campaigns covering agricultural crops (Las Tiesas–Barrax, Spain) and deciduous broadleaf forest (Wytham Woods, UK). Providing high-spatial-resolution reference maps with per-pixel uncertainty estimates, the framework is applicable to a range of other bio-geophysical variables including leaf area index (LAI), the fraction of vegetation cover (FCOVER), and canopy water content (CWC). The proposed procedures will facilitate conformity testing of moderate spatial resolution vegetation bio-geophysical products in future validation exercises
    corecore