
International Journal of Applied Earth Observation and Geoinformation 123 (2023) 103479

Available online 9 September 2023
1569-8432/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

GEOV2: Improved smoothed and gap filled time series of LAI, FAPAR and 
FCover 1 km Copernicus Global Land products 

Aleixandre Verger a,b,*, Jorge Sánchez-Zapero c, Marie Weiss d, Adrià Descals b, 
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A B S T R A C T   

Essential vegetation variables including leaf area index (LAI), fraction of absorbed photosynthetic active radi
ation (FAPAR) and fraction of green vegetation cover (FCover) are produced and distributed in the Copernicus 
Global Land Service. We describe here the algorithmic principles, consistency and improvements of GEOV2, 
Version 2 of LAI, FAPAR and FCover products derived from SPOT/VGT (1999–2013) and PROBA-V data 
(2014–2020) at 1 km resolution, as compared to the earlier version GEOV1. GEOV2 is based on neural networks 
first trained with CYCLOPES and MODIS products to estimate LAI, FAPAR and FCover from daily top of canopy 
reflectance. Temporal techniques are then applied to filter, smooth, fill gaps and get a composited value every 10 
days. Results show that GEOV2 products keep a high consistency with GEOV1 (90% of residuals within ± max 
(0.5, 20%) LAI, and 80% within ± max(0.05, 10%) FAPAR / FCover) and improves in terms of product 
completeness (<1% of missing data), temporal consistency, consistency across variables and accuracy.   

1. Introduction 

Vegetation state and dynamics play a key role in the global climate 
and biochemical cycles. The leaf area index (LAI) and the fraction of 
absorbed photosynthetic active radiation (FAPAR) are essential climate 
variables (GCOS, 2022) intervening within key processes, including 
photosynthesis, respiration and transpiration. These vegetation vari
ables control the exchanges between the biosphere and the atmosphere, 
and they are crucial in several applications from climate and land sur
face modelling at the global scale to agricultural and forest management 
at the landscape scale (Fang et al., 2019a). The fraction of green vege
tation cover (FCover) as seen from nadir is also crucial for partitioning 
contributions between soil and vegetation in land surface models. 

Over the last two decades, several LAI, FAPAR and FCover global 
datasets have been routinely produced from moderate resolution satel
lite data including MODIS (Myneni et al., 2002), VIIRS (Yan et al., 
2018), VEGETATION (VGT) (Baret et al., 2007) or OLCI (Gobron, 2011) 
among others (see a review in Bayat et al. (2021)). At the European 
level, the Copernicus Global Land Service (CGLS) provided Version 1 of 

Collection 1 km LAI, FAPAR and FCover products, also known as 
GEOV1, derived from SPOT/VGT and PROBA-V data for the 1999–2020 
period products (Baret et al., 2013). GEOV1 products were delivered 
every 10 days with a 12-day lag. Validation studies showed that GEOV1 
outperformed other existing products both in terms of accuracy and 
precision (Camacho et al., 2013). While being one of the smoothest 
available products, GEOV1 displayed some temporal inconsistencies and 
noise mainly caused by cloud contamination, residual atmospheric or 
directional effects, and snow cover. More importantly, this product 
exhibited a significant fraction of missing data specifically due to snow 
for high-latitude canopies and cloud cover for tropical forests. Inter
comparison exercises confirmed that the existing global moderate res
olution biophysical products including GEOV1 do not meet GCOS and 
CGLS user requirements (CGLS, 2015) in terms of temporal consistency, 
stability, continuity and uncertainty, particularly for tropical and boreal 
regions (Camacho et al., 2013; Fang et al., 2013; Jin et al., 2017). To 
comply with the CGLS user requirements (CGLS, 2015), Version 2 of 
CGLS 1 km products, hereafter GEOV2, were designed to be consistent 
with GEOV1 while improving their limitations in terms of continuity and 
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smoothness and providing near real time estimates with a maximum of 
2-day lag. 

Both GEOV1 and GEOV2 capitalize on the development and vali
dation of already existing products, and the use of machine learning 
techniques (Baret et al., 2013; Verger et al., 2008; Verrelst et al., 2012). 
The main difference between GEOV1 and GEOV2 is the temporal 
composition approach used to generate products at a 10-day step. 
Temporal compositing highly determines the temporal stability and 
continuity of the derived satellite biophysical products (Huang et al., 
2021; Verger et al., 2016). The LAI retrieval algorithms adopt a wide 
variety of temporal approaches. This includes the well-known maximum 
value compositing used in MODIS algorithm (Myneni et al., 2002). This 
compositing strategy operates over a local temporal window and cannot 
take full advantage of the temporal correlation of the observations 
which can also be informative (Pu et al., 2023). The temporal correla
tion information is used in GEOV1 algorithm which incorporates tem
poral prior knowledge to better constraint a kernel driven model 
inversion for the bidirectional reflectance distribution function (BRDF) 
within a temporal weighted 30-day compositing window (Baret et al., 
2007; Baret et al., 2013). However, this compositing approach is limited 
by the realism of the BRDF model, and it may induce inconsistent re
trievals at extreme sun angles, particularly, at high latitudes during the 
wintertime (Verger et al., 2015). In addition, this compositing technique 
cannot deal with long periods of missing data due to permanent cloud or 
snow cover within the 30-day compositing window which results in poor 
temporal continuity in the GEOV1 products (Camacho et al., 2013). 
More elaborated methods were designed to smooth time series, fill gaps 
and to provide short term forecast using temporal prior information over 
a long period, combined with daily product values. Verger et al. (2013) 
derived LAI at 10-day frequency by fitting a phenology model based on 

the climatology (i.e. the inter-annual mean of long-term time series of 
LAI) to the daily estimates over each season. This climatological fitting 
approach is superior to standard reconstruction methods in situations 
with long periods of missing data (Kandasamy et al., 2013; Verger et al., 
2013). Conversely, a local asymmetric Savitzky-Golay filter using linear 
interpolation for gap filling over a limited temporal window of 120 days 
as proposed by Verger et al. (2011) improved the accuracy of the of LAI 
time series with a gap fraction up to 60% (Kandasamy et al., 2013). 
These previous studies inspired us to develop a smoothing and gap 
filling approach where the temporal prior information derived from the 
exploitation of the several years available in the time series could be 
used more explicitly in a temporal technique working over a limited 
local time window. These principles were exploited in GEOV2. A 
climatology is ingested as a background information for improving the 
reliability of a local polynomial compositing method. Further, similar to 
MODIS principles, a maximum envelope approach is used to filter out
liers and improve the accuracy and stability of retrievals. 

This paper describes the GEOV2 algorithm and the resulting LAI, 
FAPAR and FCover products derived from SPOT/VGT (1999–2013) and 
PROBA-V (2014–2020) data. GEOV2 products will be evaluated based 
on the comparison with GEOV1 and MODIS products, as well as with 
ground measurements. We focus here in the processing of the historical 
time series for 1999–2020 period, as the near real time algorithm was 
already described and evaluated in Verger et al. (2014). 

2. Material and methods 

2.1. GEOV2 algorithm description 

We describe here the principles of GEOV2 retrieval algorithm. 

Fig. 1. Flow chart of GEOV2 retrieval algorithm. In step 1, daily synthesis (S1) top of canopy (TOC) reflectance from SPOT/VGT and PROBA-V are transformed into 
daily estimates of LAI, FAPAR and FCover using two neural networks (NNTs) specifically trained for Evergreen Broadleaf Forest (EBF) and non EBF pixels. In step 2, 
dedicated filtering, smoothing, gap filling and compositing temporal techniques are applied. The inputs of this second step are the daily estimates (S1), the sun zenith 
angle of the observations, the latitude, a climatology of LAI, FAPAR and FCover (GEOCLIM), and the EBF and Bare Soil (BS) landcover classes derived from GEOCLIM. 
The outputs are the final 10-day LAI, FAPAR and FCover GEOV2 products. 
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Further details are provided in the algorithm theoretical basis document 
(https://land.copernicus.eu/global/documents/products). The algo
rithm consists of two main steps (Fig. 1): (1) neural networks first 
compute daily LAI, FAPAR and FCover estimates from SPOT/VGT and 
PROBA-V data; (2) the daily LAI, FAPAR and FCover estimates were then 
composited every 10-day. 

2.1.1. Daily LAI, FAPAR, and FCover estimates 
The derivation of the biophysical daily estimates of LAI, FAPAR and 

FCover is based on the application of neural networks trained over 
existing Carbon cYcle and Change in Land Observational Products from 
an Ensemble of Satellites (CYCLOPES) version 3.1 (Baret et al., 2007) 
and MODIS Collection 5 (Yang et al., 2006) like in GEOV1 algorithm 
(Baret et al., 2013) and as demonstrated first by Verger et al. (2008). To 
be consistent with GEOV1, the neural networks were trained using VGT 
input data. The inputs are top of the canopy daily S1 reflectance in red, 
near infrared (NIR) and short-wave infrared (SWIR) spectral bands 
(Fig. S1), and the cosine of the three associated sun-view angles (view 
zenith, sun zenith and relative azimuth angles). The corresponding 
target biophysical variables were coming from the fusion between 
CYCLOPES and MODIS. Since previous validation studies (e.g. Camacho 
et al., 2013) demonstrated that MODIS overestimated low LAI/FAPAR 
values whilst CYCLOPES showed an earlier saturation for high values, 
the fusion (Table 1) aimed to mitigate the limitations of individual 
products and combining them to take advantage of CYCLOPES products 
for low LAI/FAPAR values and MODIS for high LAI/FAPAR values, 
respectively (Verger et al., 2014). Note that for FCover, no fusion was 
completed since CYCLOPES was the only available source product. 

The training was achieved for the 2003–2007 period over the BEL
MANIP2.1 (Weiss et al., 2014) set of sites. Two sets of specific neural 
networks, one for Evergreen Broadleaf Forests (EBF) and one for non- 
EBF, were calibrated for each of the three variables: LAI, FAPAR and 
FCover (Fig. S2). EBF identification corresponds to the EBF/non-EBF 
classification of the GEOCLIM dataset, based on the magnitude and 
seasonality of GEOV1 LAI time series (Verger et al., 2015). Since the 
neural networks were trained on VGT reflectance data, we applied a 
bandpass adjustment to PROBA-V (2014–2020) to get VGT like TOC 
reflectance and rescaled the PROBA-V neural network estimates to VGT 
ones. 

2.1.2. Generation of 10-day composites 
To get continuous and consistent time series the daily LAI, FAPAR 

and FCover estimates were composited every 10-day (Fig. 2, Fig. S3). 
First, for pixels identified as EBF (Fig. S4b) and for high latitudes 
(lat > 55◦ ) in winter time (sun zenith angle, SZA > 70◦ ) the outliers are 
filtered assuming a small seasonal amplitude and, respectively, high 

(Fig. 3a) and low values of LAI (Fig. 3b, c) (Verger et al., 2015). Then, 
the Consistent Adjustment of Climatology to Actual Observations 
(CACAO) (Verger et al., 2013) technique and Temporal Smoothing Gap 
Filling (TSGF) Savitzky-Golay based filter (Verger et al., 2011) were 
applied (Fig. 2). CACAO consists of fitting a climatology to the daily 
estimates by adjusting the magnitude and shifting the climatology in 
time for each season (Verger et al., 2013). We used GEOCLIM (Verger 
et al., 2015) as the climatology (dashed green line in Fig. 3). The 
resulting CACAO values (continuous green line in Fig. 3) are evenly 
distributed every 10-days, and then used to fill gaps before the appli
cation of TSGF if less than six daily estimates exist in a 60-day semi- 
window. TSGF fits a weighted second-degree polynomial over an 
asymmetric temporal window. The compositing window is made of 
semi-windows at each side of the date of the product with an adaptive 
length varying between 15 and 60 days that contains at least six valid 
daily estimates or CACAO values the closest to the date at which the 
product is generated (Verger et al., 2014). This process is repeated three 
times (Fig. 2) and the daily estimates are filtered and weighted based on 
their distance Δ to the TSGF composites computed in the previous 
iteration using an upper envelope approach with weights defined as 
W = 2/(1+exp( − 2*Δ)) which assigns less weight to the lower values 
than TSGF since they are affected by cloud contamination (Cihlar, 
1996). In the first iteration W were fixed to 1. To put less emphasis on 
the climatological values used to fill gaps, weights of CACAO values 
were multiplied by a scale factor of 0.5. Finally, when the climatology is 
not available, the residual gaps are filled using a linear interpolation 
within a ± 60-day window. Gaps longer than 120 days are not filled and 
are flagged as missing data. The products are provided with several 
quality indicators (Fig. S4) and the pathway used to fill the possible gaps 
is also indicated. 

2.2. Other satellite products 

2.2.1. GEOV1 and differences with GEOV2 
We used the GEOV1 LAI, FAPAR and FCover products (Baret et al., 

2013) which, as GEOV2, are available over plate carrée projection at 1/ 
112◦ spatial resolution and a temporal step of 10 days on the CGLS web 
site (https://land.copernicus.eu/global/products). Both GEOV1 and 
GEOV2 are derived from SPOT/VGT and PROBA-V data. And they are 
based on neural networks calibrated with CYCLOPES and MODIS 
products. However, some differences in algorithms exist between 
GEOV1 and GEOV2 (Table 1). 

2.2.2. MODIS 
We used the TERRA MODIS C6 LAI and FAPAR products 

(MOD15A2H), which are available at a spatial resolution of 500 m over 

Table 1 
Algorithm differences between GEOV1 and GEOV2.   

GEOV1 GEOV2 

Neural network (NNTs) inputs 30-day directionally normalized top of the canopy 
reflectance composites every 10 days (nadir) in the 
red, NIR and SWIR bands 

Top of canopy daily bidirectional reflectance in the red, NIR and SWIR bands  

Cosine of median sun zenith angle of observations in 
the compositing period which is used for 
normalization 

Cosine of the zenith and relative azimuth angles of sun and view directions 

Weighting function for 
CYCLOPES and MODIS fusion 
(NNTs training) 

{
LAIfused = LAIMODC5.(1 − w) + LAICYCV31 • w

fAPARfused = fAPARMODC5 • (1 − w) + fAPARCYCV31 • w  

w = min(1,
1
4
LAICYCV31) w =

1
0.982

(1 −
1

(1 + exp( − 2.LAICYCV31 + 4) )
)

Training & application of NNTs Generic Specific: evergreen broadleaf forest (EBF) and non-EBF distinction 
Temporal composition Composition of input reflectance based on a 15-day 

semi-period with Gaussian weighting 
Composition of the output daily biophysical estimates using an adaptive temporal 
window. The length of each semi-period varies between 15 and 60 days so that it contains 
at least 6 valid observations 

Temporal smoothing and gap 
filling 

Not applied Application of Temporal Smoothing and Gap Filling (TSGF) and Consistent Adjustment of 
Climatology to Actual Observations (CACAO) filters 

Near Real Time 12-day lag delivery 2-day lag delivery  
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a sinusoidal grid and a step of eight days since 2000 at https://ladsweb. 
modaps.eosdis.nasa.gov. The main retrieval algorithm is based on the 
inversion of a 3D radiative transfer model using a look-up table which 
depends on the landcover (Yan et al., 2016). The MOD15A2H products 
were reprojected and resampled to the GEOV2 grid. The quality flag was 
used to retain only the best quality values. 

2.3. Assessing the quality of the GEOV2 products 

The validation approach follows the CEOS land product validation 
guidelines (Fernandes et al., 2014):  

• Product completeness: spatio-temporal continuity of the products. 
• Temporal consistency: We assessed the seasonality of typical tem

poral profiles of different biome types during the 2012–2015 period.  
• Spatial consistency: We assessed the consistency between SPOT/ 

VGT and PROBA-V GEOV2 products during the overlapping period 
of the two sensors from October 2013 to March 2014. We also 
compared GEOV2 with GEOV1 and MODIS C6 products during the 
2012–2015 period. GEOV2 (product Y) and the reference product (X) 
are spatially consistent when their residuals (ε), computed as ε =

Y − (aX+b) where a and b result from the linear fit between the two 

products, are within the optimal uncertainty levels of the variables 
defined as max(0.5, 20%) for LAI and max(0.05, 10%) for FAPAR 
and FCover. These levels correspond to the CGLS (2015) and GCOS 
(2011) accuracy requirements for LAI and FAPAR. 

• Statistical analysis between products: We compared GEOV2 prod
ucts derived from SPOT/VGT with those from PROBA-V, GEOV1 and 
MODIS C6 products of the closest date over 3 km × 3 km support area 
over the LANDVAL sites (https://calvalportal.ceos.org/sampling) 
(Fuster et al., 2020).  

• Accuracy assessment: We validated GEOV2, GEOV1 and MODIS 
products against the ground measurements available in the 
DIRECT2.0 (http://calvalportal.ceos.org/web/olive/site-descriptio 
n) database during the 2000–2017 period. The comparison was 
performed at 3 km × 3 km. The closest satellite product date to the 
field campaign within a maximum period of ± 15 days was used. 

3. Results 

A selection of main validation results is presented here. For addi
tional quality evaluation results the reader can refer to the GEOV2 
validation reports (https://land.copernicus.eu/global/documents 
/products). 

Fig. 2. Flowchart for the generation of 10-day composites: filtering, smoothing and gap filling time series depends on the number of available observations within ±
60 days (N60d). 
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3.1. Completeness 

GEOV2 highly improved product completeness as compared to 
GEOV1. It shows<1% of missing values at the global scale (Fig. S3), only 
at very high latitudes where GEOCLIM climatology was not available 
(Verger et al., 2015). The percentage of filled land pixels in GEOV2 is 
very similar to the percentage of missing values in GEOV1 (Fig. 4). The 
lack of PROBA-V satellite observations goes up to 80% over large regions 
in the northern latitudes (Fig. 4a) mainly due to snow cover or cloudi
ness in wintertime (Fig. 4c) and over equatorial regions (Fig. 4a) with 
persistent cloud coverage (Fig. 4c) and in these cases the climatological 
gap filling is applied in GEOV2. The percentages of filled pixels for 
GEOV2 are greater than the percentage of missing values for GEOV1 in 
EBF areas as well as for deciduous broadleaf and mixed forests in sum
mer (cf. Fig. 4c-d) because, in these cases, a high fraction of data with 
residual cloud cover is filtered out in the outlier rejection process 
applied in GEOV2 (Fig. 3, a, b, c) but, even in these cases, the final 
product shows full spatio-temporal continuity (Fig. S3). 

3.2. Temporal consistency 

The analysis of the temporal consistency per biome type shows 
(Fig. 3):  

• For EBF (Fig. 3a), the effect of residual clouds is very pronounced, 
creating strongly negative biased estimates of the daily products. 
These outliers are filtered and GEOV2 shows a low seasonality with a 
high level of LAI as expected. As compared to GEOV2, GEOV1 shows 
generally lower LAI values, discontinuous and shaky temporal 
profiles.  

• For deciduous broadleaf forest (Fig. 3b), the negatively biased daily 
estimates affected by cloud contamination (Cihlar, 1996) are effi
ciently filtered by the upper envelope approach in the GEOV2 
algorithm.  

• For very high northern latitude needleleaf forests (Fig. 3c), the 
GEOV2 temporal profile is consistent with that of GEOV1 during the 
growing season, while no interruption is observed during the winter 
period conversely to GEOV1. Further, GEOV2 corrects the 

Fig. 3. Temporal profile of GEOV2 LAI product (black solid line) for the 
2012–2015 period over a selection of LANDVAL sites. The site number, biome 
type and location are indicated. The dashed black line indicates the switchover 
from SPOT/VGT to PROBA-V. Empty dots correspond to the daily valid LAI 
estimates and filled dots to the outliers. The red line corresponds to GEOV1. The 
dashed green line corresponds to the climatology derived from GEOV1 
1999–2010 time series (GEOCLIM). The solid green line to the CACAO esti
mates: the climatology adapted to the daily estimates. 

Fig. 4. GEOV1 and GEOV2 product completeness. Percentage of missing values for GEOV1 products (left) and percentage of filled land pixels for GEOV2 products 
(right): maps of average values over year 2015 (top) and temporal evolution per biome (Buchhorn et al., 2020) (bottom). 
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anomalous high values in winter time observed in GEOV1 due to 
snow or directional effects under extreme illumination conditions 
that limit the reliability of the BRDF model (Roujean et al., 1992) 
applied in GEOV1.  

• The seasonality of the double cycle cropland (Fig. 3d) is consistently 
described by both GEOV1 and GEOV2. However, the discontinuities 
noticed for GEOV1 have disappeared in GEOV2.  

• The temporal profile of the shrubland (Fig. 3e) is well captured by 
both GEOV1 and GEOV2. 

These results show that GEOV2 largely improves as compared to 
GEOV1, both in terms of temporal smoothness (Fig. S5) and temporal 
continuity (no gaps). Further, GEOV2 shows a smooth transition be
tween SPOT/VGT and PROBA-V (Fig. 3). 

3.3. Spatial consistency 

3.3.1. Consistency between SPOT/VGT and PROBA-V estimates 
Overall, PROBA-V and SPOT/VGT GEOV2 products are spatially 

consistent (Fig. 5a), with histograms of residuals (Fig. 5b) showing 
narrow distributions centred at zero with more than 95% of residuals 
ranging between ± 0.5 LAI, and around 90% within ± 0.05 FAPAR and 
FCover (Fig. S6). The highest spatial inconsistencies are observed in the 
South hemisphere regions (EBF in Africa and cultivated areas in South of 
America) that show the highest vegetation activity during the over
lapping period between PROBA-V and SPOT/VGT (Fig. S3). In these 
cases, PROBA-V systematically provides higher values than SPOT/VGT 
(Fig. S7). These inconsistencies are due, in part, to the differences in the 
spectral response function (Fig. S1), point spread function and pro
cessing chain (e.g., cloud-aerosol screening) of input TOC reflectance 
between sensors. 

3.3.2. Consistency between GEOV1 and GEOV2 products 
GEOV2 and GEOV1 are spatially consistent with 90% (80%) of re

siduals within the CGLS uncertainty requirements for LAI (FAPAR and 
FCover) (Fig. 6). The highest spatial inconsistencies are observed over 
Equatorial Areas and Northern high latitudes. For EBF pixels, GEOV2 
shows higher LAI, FAPAR and FCover values than GEOV1 (Fig. S8). In 
northern high latitudes positive residuals (up to 1 LAI and 0.1 FAPAR 
and FCover) are also observed in summer when the vegetation activity 
and development is at its maximum (Fig. S8, b, d, f) whilst negative 
residuals in winter period when, if available, GEOV1 provides unreal
istic high values (Fig. S8, a, c, e; Fig. 3, b, c). For FCover (Fig. 6e), some 
spatial inconsistencies are observed over Sahara Desert corresponding to 
a false seasonality depicted in GEOV1 which is corrected in GEOV2 
(Fig. S3). 

3.3.3. Consistency between GEOV2 and MODIS C6 products 
MODIS C6 products shows higher spatial inconsistencies with 

GEOV2 than GEOV1 (Fig. 7, Fig. S9): 75% of LAI residuals are matching 

the accuracy requirements but only 50% for FAPAR. The histograms of 
FAPAR residuals per month are slightly biased towards negative values, 
centered around − 0.03 (Fig. 7d). MODIS shows higher FAPAR values 
than GEOV2 over sparsely vegetated regions and over widespread areas 
during the vegetation dormancy (Fig. S9 c, d). 

3.4. Statistical analysis 

The scatterplots between PROBA-V and SPOT/VGT GEOV2 over the 
LANDVAL sites during the overlapping period (2013/10/16–––2014/ 
03/31) show that the two products agree well (RMSD < 0.2 for LAI and 
< 0.03 for FAPAR and FCover). Additionally, the relationship is unbi
ased (Fig. 8a-c). 

GEOV2 and GEOV1 LAI products show very good consistency for LAI 
lower than 4 (Fig. 8d). For larger values of LAI, there is higher scattering 
between GEOV2 and GEOV1 and a systematic bias partially due to the 
noise in the data and to the different processing applied to EBF pixels for 
the two versions. GEOV1 is lower than GEOV2 for EBF pixels and pro
duced wider distributions of LAI (Fig. S10). Indeed, it is more affected by 
noise and shows a negative bias due to cloud misdetections as compared 
to GEOV2 (Fig. 3a) which benefits from an improved cloud filtering and 
smoothing. The overall RMSD across biomes is 0.47 (33%) LAI with very 
high correlation between GEOV2 and GEOV1 (R = 0.97). For FAPAR 
(Fig. 8e, Fig. S11) and FCover (Fig. 8f, Fig. S12) variables very strong 
consistency (R = 0.98, RMSD < 0.07 (18%)) is also observed between 
GEOV2 and GEOV1. Note however that GEOV2 values are slightly lower 
than GEOV1 for FAPAR values ranging between 0.25 and 0.85 (Fig. 8e), 
and FCover close to 1 (Fig. 8f, Fig. S12). GEOV2 allows to partially 
correct the systematic overestimation of GEOV1 FAPAR and FCover 
values observed against ground measurements (Fuster et al. (2020); c.f. 
section 3.5). 

The comparison between GEOV2 and MODIS C6 LAI products 
(Fig. 8g) shows a good agreement with, however, a higher scattering and 
GEOV2 systematically providing higher estimates than MODIS inter
mediate LAI values. The high scattering is partially associated to the 
noise in MODIS product which is characterized by having low stability 
(Fig. S5) (Camacho et al., 2013). For FAPAR, GEOV2 and MODIS C6 
highly agree (Fig. 8h, S11) except for low values where MODIS FAPAR 
shows a positive bias which is a well-recognized issue: MODIS FAPAR 
overestimates low FAPAR values over sparsely vegetated areas (Cama
cho et al., 2013; McCallum et al., 2010; Steinberg et al., 2006). 

3.5. Accuracy assessment 

GEOV2 correlates the best with DIRECT2.0 ground measurements of 
LAI, FAPAR and FCover (Fig. 9). GEOV2 and GEOV1 LAI show similar 
accuracies: RMSD of 0.91 and 0.85, respectively, and are slightly better 
than MODIS C6 (RMSD of 1.03 LAI). GEOV2 FAPAR and FCover slightly 
improves the accuracy of GEOV1: RMSD of 0.11 FAPAR and 0.15 FCover 
for GEOV2 in comparison with 0.12 FAPAR and 0.17 FCover for GEOV1. 

Fig. 5. Consistency between SPOT/VGT and PROBA-V GEOV2 LAI products during the overlapping period from October 2013 to March 2014: (a) Percentage of cases 
within CGLS optimal uncertainty levels: max(0.5, 20%) LAI; (b) Histogram of residuals per month. 
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However, both GEOV2 and GEOV1 overestimate ground values of 
FAPAR and FCover with a higher positive bias for GEOV1: mean bias of 
0.04 (8%) FAPAR for GEOV2 compared with 0.06 (14%) FAPAR for 
GEOV1, and bias of 0.08 (18%) FCover for both GEOV2 and GEOV1 with 
a slope from MAR of 1.18 and 1.27, respectively. GEOV1 and GEOV2 
products show better results than MODIS C6 FAPAR (RMSD of 0.15 and 
bias of 0.06 (12%)) and partially reduce the systematic positive bias for 
low FAPAR values observed for MODIS. 

4. Discussion 

GEOV2 products are already widely used for land surface modelling, 
photosynthesis and gross primary production estimation (Zhang et al., 
2020), evapotranspiration estimation (Yin et al., 2021), phenology 
estimation (Bórnez et al., 2020), drought monitoring (Cammalleri et al., 
2019) or crop monitoring (Du et al., 2022), among many other appli
cations. Regardless the application, we highly recommend to the users to 
pay due attention to the quality indicators associated to the products. 
We discuss here the limitations of GEOV2 algorithm and derived 
products. 

SPOT/VGT and PROBA-V GEOV2 products are consistent across the 
overlapping period. However, a long-term trend analysis revealed that 
sensor shift may have resulted in a spurious increase in LAI and asso
ciated uncertainties (Fang et al., 2021b). This may indicate some re
sidual inconsistencies in the input TOC reflectance between PROBA-V 
and SPOT/VGT which transfer to the GEOV2 time series. The new 
collection of PROBA-V TOC reflectance (Toté et al., 2021), soon to be 
released, may contribute to improve GEOV2 times series. Improving 
their long-term consistency is crucial for a better understanding of the 
trend of global LAI and the spatio-temporal patterns of carbon sink and 
source of ecosystems. 

GEOV2 highly improves GEOV1 in terms of product completeness 
(Fig. 4): <1% of missing data for GEOV2 compared to more than 70% 
and 80% of gaps for GEOV1 in the tropical forests and high latitudes in 
winter, respectively. If GEOCLIM climatology is available for a given 
pixel, GEOV2 products have no missing data because the CACAO 
method allows filling all the gaps in the time series. CACAO, as 
compared to the original climatology, allows inter-annual variations of 
the time course and adaptation to actual observations (Fig. 3). However, 
the main limitation of the CACAO reconstruction method is its inability 

Fig. 6. Consistency between GEOV2 and GEOV1 products during the 2012–2015 period, from top to bottom: LAI, FAPAR and FCover. Left: percentage of cases 
within CGLS optimal uncertainty levels: max(0.5, 20%) LAI and max(0.05, 10%) FAPAR / FCover. Right: histogram of residuals per month. 
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to capture underlying atypical modes of seasonality in the time series 
that strongly differ from the average climatology (Fig. 3e; Verger et al., 
2013). To prevent from such drawback, in GEOV2 algorithm priority is 
given to TSGF smoothing since it is closer than CACAO to the daily es
timates, while CACAO is only used to fill large gaps in the time series. 
This approach mostly overcomes CACAO limitations, and the final 
products capture the seasonal abrupt variations in vegetation temporal 
evolution including land cover changes, flood or fire events (Fig. S13). 
Recent studies demonstrated the accuracy of the phenology metrics 
retrieved from GEOV2 products as compared to other satellite products 
(Yu et al., 2021) and ground-based measurements (Bórnez et al., 2020), 
which suggest that these smoothed time series correctly replicate the 
vegetation seasonality. 

The GEOV2 algorithm uses a static mask for EBF identification based 
on GEOCLIM climatology for the period 1999–2010. For pixels flagged 
as EBF, GEOV2 assumes a low seasonality and only reproduces the high 
values of the time series but cannot capture disturbances including 
deforestation processes. A future evolution of GEOV2 products could 
include an update of the EBF mask with recent time series and auxiliary 
data, and a dynamic EBF detection. 

GEOV2 improved internal consistency between variables as 
compared to GEOV1 (Fig. S14) which showed few artefacts for low 
FCover values and inconsistent FAPAR-FCover relationship. This 
partially contradicts a recent study by Mota et al. (2021) who claimed 
that GEOV2 LAI and FAPAR products lacked consistency in their spatial 
and temporal changes. In this sense, they recommend to use the TIP 
(Pinty et al., 2011) approach which uses their LAI product among other 
variables to derive FAPAR, allowing, by construction, to keep consis
tency across variables. However, even though temporal changes in LAI is 
the primary driver of temporal changes in FAPAR, changes in leaf and 
canopy properties and environmental conditions also impact LAI and 
FAPAR relationship (Lee et al., 2023). Further the relationship between 
FAPAR and LAI is asymptotic (Fig. S14), and, for LAI greater than 3, 
FAPAR saturates at around 0.8–0.9 and is relatively insensitive to 

changes in LAI. Fang et al. (2021a) explored the relationship between 
vegetation biophysical variables and showed consistency between 
GEOV2 FCOVER product and MODIS C6 LAI except in few situations at 
northern latitudes higher than 50◦ where the products have higher un
certainties. Further confrontation with continuous ground measure
ments are required to assess the realism of these global datasets. Yu et al. 
(2021) validated several kilometric LAI global products using contin
uous field measurements of LAINet and showed that GEOV2 well 
reproduced the reference LAI in terms of magnitude and phenology 
whilst a TIP based product systematically underestimated high LAI 
values and showed a temporal mismatch with ground measurements. 
Song et al. (2021) also validated four LAI products with continuous field 
measurements and showed that GEOV2 provided the highest accuracy 
and temporal consistency. 

GEOV2 products were not impacted by the degradation effects in 
MODIS C5 after ~ 2007 (Lyapustin et al., 2014) because the MODIS 
products were only used for the calibration of GEOV2 algorithm and the 
calibration was achieved in the period 2003–2007 (section 2.1.1). 

GEOV2, as well as other satellite products, are not accurate over the 
wetlands and flooded areas (Campos-Taberner et al., 2018; Fang et al., 
2019b; Fuster et al., 2020). They overestimate LAI, FAPAR and FCover 
values over rice crops during the early and growing periods of devel
opment (Fig. 9) because the decrease in reflectance values due to strong 
water absorption in paddy rice fields is misinterpreted as a dense 
vegetation canopy. This is a legacy effect since the CYCLOPES V3.1 and 
MODIS C5 products used for the calibration of GEOV2 algorithm were 
developed from physical radiative transfer models which are not 
applicable over heterogeneous surface partially covered with water (Xu 
et al., 2020). Further algorithm improvements and/or semiempirical 
corrections are necessary to improve the global LAI, FAPAR and FCover 
products over the wetlands and flooded areas. 

Further validation and comparison with ground data are required in 
particular for FCover. The confrontation with DIRECT2 measurements 
showed that both GEOV1 and GEOV2 FCover have a systematic positive 

Fig. 7. Consistency between GEOV2 and MODIS C6 products during the 2012–2015 period for LAI (top) and fAPAR (bottom). Left: percentage of cases within CGLS 
optimal uncertainty levels: max(0.5, 20%) LAI and max(0.05, 10%) FAPAR (left). Right: histogram of residuals per month. 
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bias for intermediate values despite it is partially reduced for GEOV2 
(Fig. 9 c, f). Note however that the accuracy of ground based FCover 
estimates is partially compromised by the very limited footprint, low 
spatial resolution and sensitivity to exposure setting of traditional fish
eye cameras which result in an underestimation of intermediate FCover 
ground-based estimates (Yin et al., 2022). 

The proposed algorithm can be adapted to any sensor. These prin
ciples have also been applied to AVHRR data to generate long-term LAI, 
FAPAR and FCover data records for the last four decades since 1981 
(Verger et al., 2020) to support studies of long-term global vegetation 
change. 

5. Conclusions 

This paper presented the GEOV2 algorithm implemented opera
tionally in the Copernicus Global Land Service (CGLS) for the generation 
of LAI, FAPAR and FCover Collection 1 km V2 products derived from 

SPOT/VGT and PROBA-V data at global scale from January 1999 to 
June 2020 at 1/112◦ spatial resolution and 10-day frequency. The 
GEOV2 products are generated in two steps. The first step is based on 
neural networks trained on a combination of the existing CYCLOPES and 
MODIS products, that generate daily LAI, FAPAR and FCover estimates. 
The second step uses dedicated temporal smoothing and gap filling 
techniques to provide the final 10-day products and ensure consistency 
and continuity in the time series. 

We assessed the quality of GEOV2 products with due attention to the 
consistency and improvements with GEOV1. GEOV2 products are 
consistent with GEOV1 at the global scale and meet CGLS and GCOS 
uncertainty requirements in 90% of cases for LAI, and 80% for FAPAR 
and FCover. GEOV2 showed a similar accuracy as GEOV1 for LAI and 
slight improvements for FAPAR and FCover as evaluated over the 
limited ground measurements available. In addition, GEOV2 highly 
improves GEOV1 in terms of product completeness and does not show 
any missing data thanks to climatological gap filling that ensures 

Fig. 8. Scatterplots of concurrent products over the LANDVAL sites between PROBA-V and VGT GEOV2 products during the overlapping 2013–2014 period (top), 
GEOV2 and GEOV1 (middle), and GEOV2 and MODIS C6 (MOD15A2H, bottom) during 2012–2015: LAI (left), FAPAR (middle) and FCover (right). The comparison is 
performed at 3 km × 3 km: i.e. 3x3 GEOV1/2 pixels, and 6x6 MODIS pixels. The black line corresponds to the 1:1 line and the continuous red line to the linear fit 
using major axis regression (MAR). The number of samples (N = sites × dates), the correlation coefficient (R), the offset and slope of the MAR linear regression, the 
root mean square deviation (RMSD), the bias (B) and the standard deviation (STD) are indicated. 
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product retrieval even when scarce or no observation are available 
during a long period. GEOV2 and GEOV1 time series showed high 
temporal consistency in most of the situations. GEOV2 corrects the in
consistencies identified in GEOV1 at very high Northern latitudes (ar
tifacts introduced by the BRDF model in extreme illumination 
conditions) and for evergreen broadleaf forest (noise and discontinuities 
in GEOV1 due to cloud cover). Additionally, GEOV2 improves both the 
inter- and intra-annual precision. GEOV2 also improves the internal 
consistency across variables and corrects both the scattering and some 
artifacts in the relationships between LAI-FAPAR-FCover. 

The SPOT/VGT and PROBA-V GEOV2 LAI, FAPAR and FCover 
products are available at CGLS portal (https://land.copernicus.eu/gl 
obal/products). They are used to support a wide range of applications 
and policies requiring information of the status and evolution of vege
tation at global scale. 
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Data availability 

The GEOV2 and GEOV1 products are available at the Copernicus 
Global Land Service data portal (https://land.copernicus. 
eu/global/products). The MOD15A2H products are available at 
https://ladsweb.modaps.eosdis.nasa.gov. The DIRECT2.0 reference 
dataset is available at http://calvalportal.ceos. 
org/web/olive/site-description. 

Fig. 9. Comparison between GEOV1 (top), GEOV2 (middle) and MODIS C6 (MCD15A2H, bottom) products with DIRECT2.0 ground-based maps of LAI (left), FAPAR 
(middle) and FCover (right) over the common samples during the 2000–2017 period. The black line corresponds to the 1:1 line, the dotted green lines to the GCOS 
and CGLS uncertainty requirements (max(0.5, 20%) for LAI, max(0.05, 10%) for FAPAR for FCover), and the continuous red line to the linear fit using major 
axis regression. 
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