8 research outputs found

    Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide

    Get PDF
    DATA AVAILABILITY : The raw data associated with this study are available in https://figshare.com/s/1eadef6619e74a8f2904 (https://doi.org/10.6084/m9.figshare.21025615).Urban greenspaces support multiple nature-based services, many of which depend on the amount of soil carbon (C). Yet, the environmental drivers of soil C and its sensitivity to warming are still poorly understood globally. Here we use soil samples from 56 paired urban greenspaces and natural ecosystems worldwide and combine soil C concentration and size fractionation measures with metagenomics and warming incubations. We show that surface soils in urban and natural ecosystems sustain similar C concentrations that follow comparable negative relationships with temperature. Plant productivity’s contribution to explaining soil C was higher in natural ecosystems, while in urban ecosystems, the soil microbial biomass had the greatest explanatory power. Moreover, the soil microbiome supported a faster C mineralization rate with experimental warming in urban greenspaces compared with natural ecosystems. Consequently, urban management strategies should consider the soil microbiome to maintain soil C and related ecosystem services.This study was supported by a 2019 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (URBANFUN), and by BES Grant. Unión Europea NextGeneration; the Spanish Ministry of Science and Innovation funded by MCIN/AEI/10.13039/501100011033; a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático ‘01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación’); the Hermon Slade Foundation; the Science and Engineering Research Board (SERB); the Department of Science and Technology (DST), India; Banaras Hindu Univeristy; the FCT; the MCTES, FSE, UE and the CFE research unit financed by FCT/MCTES through national funds (PIDDAC).https://www.nature.com/nclimatehj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-15:Life on lan

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    INCLUSION OF FIELD PEA HAY (Pisum sativum L.) AND IN VITRO GAS PRODUCTION IN DIETS FOR GROWING LAMBS

    No full text
    The use of byproducts such as field pea (Pisum sativum) is an alternative to feed sheep, the objective of this study was to evaluate the intake and digestibility in sheep fed different levels of field pea hay (FPH). Twenty Rambouillet lambs (with an initial BW of 26.0 ± 0.43 kg) were fed to one of four treatments of 5 animals of each (0%, 25%, 50% and 75% inclusion of PH as dry matter basis). The content of CP for the FPH was 8%. There were no significant differences (P>0.1) between treatments for DM intake (947.6 ± 32.3 g/d), OM (856.7 ± 24.8) and NDF (583.5 ± 30.6), as well as digestibility (g/100g) of DM (50.3 ± 1.0), OM (49.4 ± 2.38) and NDF (57.0 ± 2.23). N intake was lower (P0.1) for N excretion in feces, urine and N balance between treatments. In vitro gas production in the fraction A (ml gas / g DM incubated) was lower in FPH compared to corn stover (CS) and corn grain (CG). Fraction b was higher (P 0.1) between CS and CG for fraction c. Gas production (ml gas / g DM disappeared) was lower in FPH compared to CS and CG. In vitro DM disappearance was lower for FPH with respect to CG, however there were no differences (P>0.1) between CS and FPH. FPH can be used in diets for sheep up to 75% of inclusion, without affecting intake and digestibility. The gas production technique allows the prediction of in vitro fermentation and rumen degradation, showing a lower fermentation with 25% inclusion of FPH.

    RecruitNet: A global database of plant recruitment networks

    Get PDF
    Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants (“canopy species”) and plants in their early stages of recruitment (“recruit species”). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications

    RecruitNet: A global database of plant recruitment networks

    No full text
    Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications

    Reflexiones acerca del "reasilvestramiento" en la Argentina

    No full text

    Correction to : The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients (Critical Care, (2021), 25, 1, (331), 10.1186/s13054-021-03727-x)

    No full text
    corecore