289 research outputs found

    NGC 4138 - A Case Study in Counterrotating Disk Formation

    Get PDF
    The Sa(r) galaxy NGC 4138 has been recently found to contain an extensive counterrotating disk which appears to be still forming. Up to a third of the stars in the disk system may be on retrograde orbits. A counterrotating ring of H II regions, along with extended counterrotating H I gas, suggests that the retrograde material has been recently acquired in the gas phase and is still trickling in. Using numerical simulations, we have attempted to model the process by which the counterrotating mass has been accreted by this galaxy. We investigate two possibilities: continuous retrograde infall of gas, and a retrograde merger with a gas-rich dwarf galaxy. Both processes are successful in producing a counterrotating disk of the observed mass and dimensions without heating up the primary significantly. Contrary to our experience with a fiducial cold, thin primary disk, the gas-rich merger works well for the massive, compact primary disk of NGC 4138 even though the mass of the dwarf galaxy is a significant fraction of the mass of the primary disk. Although we have restricted ourselves mainly to coplanar infall and mergers, we report on one inclined infall simulation as well. We also explore the possibility that the H-alpha ring seen in the inner half of the disk is a consequence of counterrotating gas clouds colliding with corotating gas already present in the disk and forming stars in the process.Comment: To appear in ApJ, 21 pages, LaTeX (aaspp4) format, 17 figs (gzipped tar file) also available at ftp://bessel.mps.ohio-state.edu/pub/thakar/cr2/ or at http://www-astronomy.mps.ohio-state.edu/~thakar

    Two-Stream Instability of Counter-Rotating Galaxies

    Get PDF
    The present study of the two-stream instability in stellar disks with counter-rotating components of stars and/or gas is stimulated by recently discovered counter-rotating spiral and S0 galaxies. Strong linear two-stream instability of tightly-wrapped spiral waves is found for one and two-armed waves with the pattern angular speed of the unstable waves always intermediate between the angular speed of the co-rotating matter (+Ω+\Omega) and that of the counter-rotating matter (−Ω-\Omega). The instability arises from the interaction of positive and negative energy modes in the co- and counter-rotating components. The unstable waves are in general convective - they move in radius and radial wavenumber space - with the result that amplification of the advected wave is more important than the local growth rate. For a galaxy of co-rotating stars and counter-rotating stars of mass-fraction Ο∗<12\xi_* < {1\over 2}, or of counter-rotating gas of mass-fraction Οg<12\xi_g < {1\over 2}, the largest amplification is usually for the one-armed leading waves (with respect to the co-rotating stars). For the case of both counter-rotating stars and gas, the largest amplifications are for Ο∗+Οg≈12\xi_*+\xi_g \approx {1\over 2}, also for one-armed leading waves. The two-armed trailing waves usually have smaller amplifications. The growth rates and amplifications all decrease as the velocity spreads of the stars and/or gas increase. It is suggested that the spiral waves can provide an effective viscosity for the gas causing its accretion.Comment: 14 pages, submitted to ApJ. One table and 17 figures can be obtained by sending address to R. Lovelace at [email protected]

    Compact Ring for the ThomX-ray Source

    No full text
    THPE060International audienceOne advantage of X-ray sources based on Compton Back Scattering (CBS) processes is that such compact machines can produce an intense flux of monochromatic X-rays. CBS results from collisions between laser pulses and relativistic electron bunches. Aiming at high X-ray flux, one possible configuration combining a low emittance linear accelerator with a compact storage ring and a high gain laser cavity has been adopted by the ThomX project. We present here the main ring lattice characteristics in terms of baseline optics, possible other tunings such as low or negative momentum compaction, and orbit correction schemes. In addition, non-linear beam dynamics aspects including fringe field components as well as higher multipole tolerances are presented

    Kinematic Evidence of Minor Mergers in Normal Sa Galaxies: NGC3626, NGC3900, NGC4772 and NGC5854

    Get PDF
    BVRI and H-alpha imaging and long-slit optical spectroscopic data are presented for four morphologically normal and relatively isolated Sa galaxies, NGC3626, NGC3900, NGC4772 and NGC5854. VLA HI synthesis imaging is presented for the first 3 objects. In all 4 galaxies, evidence of kinematic decoupling of ionized gas components is found; the degree and circumstances of the distinct kinematics vary from complete counterrotation of all of the gas from all of the stars (NGC3626) to nuclear gas disks decoupled from the stars (NGC5854) to anomalous velocity central gas components (NGC3900 and NGC4772). In the 3 objects mapped in HI, the neutral gas extends far beyond the optical radius, R_HI/R_25 > 2. In general, the HI surface density is very low and the outer HI is patchy and asymmetric or found in a distinct ring, exterior to the optical edge. While the overall HI velocity fields are dominated by circular motions, strong warps are suggested in the outer regions. Optical imaging is also presented for NGC 4138 previously reported by Jore et al. (1996) to show counterrotating stellar components. The multiwavelength evidence is interpreted in terms of the kinematic "memory" of past minor mergers in objects that otherwise exhibit no morphological signs of interaction.Comment: 26 pages, 15 figures, accepted for publication in Astron. J., postscript figures available at ftp://culebra.tn.cornell.edu/pub/haynes/figures.tar.g

    Magnetic fields in the absence of spiral density waves - NGC 4414

    Full text link
    We present three-frequency VLA observations of the flocculent spiral galaxy NGC 4414 made in order to study the magnetic field structure in absence of strong density wave flows. NGC 4414 shows a regular spiral pattern of observed polarization B-vectors with a radial component comparable in strength to the azimuthal one. The average pitch angle of the magnetic field is about 20\degr, similar to galaxies with a well-defined spiral pattern. This provides support for field generation by a turbulent dynamo without significant ``contamination'' from streaming motions in spiral arms. While the stellar light is very axisymmetric, the magnetic field structure shows a clear asymmetry with a stronger regular field and a smaller magnetic pitch angle in the northern disk. Extremely strong Faraday rotation is measured in the southern part of the disk, becoming Faraday thick at 6cm. The distribution of Faraday rotation suggests a mixture of axisymmetric and higher-mode magnetic fields. The strong Faraday effects in the southern region suggest a much thicker magnetoionic disk and a higher content of diffuse ionized gas than in the northern disk portion. An elongation of the 20cm total power emission is also seen towards the South. Although NGC 4414 is currently an isolated spiral, the asymmetries in the polarized radio emission may be sensitive tracers of previous encounters, including weak interactions which would chiefly affect the diffuse gas component without generating obvious long-term perturbations in the optical structure.Comment: 12 pages, 14 figures, A&A accepte

    Small CRISPR RNAs guide antiviral defense in prokaryotes

    Get PDF
    Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into clusters of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-derived sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the host to mediate an antiviral response that counteracts infection. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Our results demonstrate that the formation of mature guide RNAs by the CRISPR RNA endonuclease subunit of Cascade is a mechanistic requirement for antiviral defense

    PHIL photoinjector test line

    Full text link
    LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns

    The Orthogonal Gaseous Kinematical Decoupling in the Sa Spiral NGC 2855

    Get PDF
    We present major and minor-axis kinematics of stars and ionized gas as well as narrow and broad-band surface photometry of the Sa spiral NGC 2855. In the nuclear regions of this unbarred and apparently undisturbed spiral galaxy the gas is rotating perpendicularly to the galaxy disk. We suggest that this kinematically-decoupled component is the signature of an acquisition process in the history of this galaxy.Comment: 7 pages, 4 PostScript figures. Accepted for pubblication in A&A. Figs. 1 and 3 at lower resolution. Data tables will be available at CD

    Ionized gas and stellar kinematics of seventeen nearby spiral galaxies

    Full text link
    Ionized gas and stellar kinematics have been measured along the major axes of seventeen nearby spiral galaxies of intermediate to late morphological type. We discuss the properties of each sample galaxy distinguishing between those characterized by regular or peculiar kinematics. In most of the observed galaxies ionized gas rotates more rapidly than stars and have a lower velocity dispersion, as is to be expected if the gas is confined in the disc and supported by rotation while the stars are mostly supported by dynamical pressure. In a few objects, gas and stars show almost the same rotational velocity and low velocity dispersion, suggesting that their motion is dominated by rotation. Incorporating the spiral galaxies studied by Bertola et al. (1996), Corsini et al. (1999, 2003) and Vega Beltran et al. (2001) we have compiled a sample of 50 S0/a-Scd galaxies, for which the major-axis kinematics of the ionized gas and stars have been obtained with the same spatial (~1'') and spectral (~50km/s) resolution, and measured with the same analysis techniques. This allowed us to address the frequency of counterrotation in spiral galaxies. It turns out that less than 12% and less than 8% (at the 95% confidence level) of the sample galaxies host a counterrotating gaseous and stellar disc, respectively. The comparison with S0 galaxies suggests that the retrograde acquisition of small amounts of external gas gives rise to counterrotating gaseous discs only in gas-poor S0s, while in gas-rich spirals the newly acquired gas is swept away by the pre-existing gas. Counterrotating gaseous and stellar discs in spirals are formed only from the retrograde acquisition of large amounts of gas exceeding that of pre-existing gas, and subsequent star formation, respectively.Comment: 14 pages, 33 figures, A&A accepte

    First Results from Commissioning of the Phin Photo Injector for CTF3

    Get PDF
    Installation of the new photo-injector for the CTF3 drive beam (PHIN) has been completed on a stand-alone test bench. The photo-injector operates with a 2.5 cell RF gun at 3 GHz, using a Cs2Te photocathode illuminated by a UV laser beam. The test bench is equipped with transverse beam diagnostic as well as a 90-degree spectrometer. A grid of 100 micrometer wide slits can be inserted for emittance measurements. The laser used to trigger the photo-emission process is a Nd:YLF system consisting of an oscillator and a preamplifier operating at 1.5 GHz and two powerful amplifier stages. The infrared radiation produced is frequency quadrupled in two stages to obtain the UV. A Pockels cell allows adjusting the length of the pulse train between 50 nanoseconds and 50 microseconds. The nominal train length for CTF3 is 1.272 microseconds (1908 bunches). The first electron beam in PHIN was produced in November 2008. In this paper, results concerning the operation of the laser system and measurements performed to characterize the electron beam are presented
    • 

    corecore