2,245 research outputs found

    Generating and Adding Flows on Locally Complete Metric Spaces

    Full text link
    As a generalization of a vector field on a manifold, the notion of an arc field on a locally complete metric space was introduced in \cite{BC}. In that paper, the authors proved an analogue of the Cauchy-Lipschitz Theorem i.e they showed the existence and uniqueness of solution curves for a time independent arc field. In this paper, we extend the result to the time dependent case, namely we show the existence and uniqueness of solution curves for a time dependent arc field. We also introduce the notion of the sum of two time dependent arc fields and show existence and uniqueness of solution curves for this sum.Comment: 29 pages,6 figure

    Emergency Action Planning in Kansas High Schools

    Get PDF
    Introduction. Current evidence shows a variable rate of emergency action plan (EAP) implementation and a low rate of compliance to EAP guidelines in United States secondary schools. Compliance to emergency action plan recommendations in Kansas high schools is not known. The purpose of this study was to identify the emergency preparedness of public high school athletics in the state of Kansas and identify prevailing characteristics of schools that correlate with decreased compliance of an EAP. Methods. Athletic directors for public high schools in the state of Kansas were asked to participate in a web-based questionnaire that was emailed to each athletic director. The questionnaire identified demographics of the study population, EAP implementation rates, compliance to national EAP guidelines, access to certified medical personnel, and training received by athletics personnel. Descriptive statistics were then compiled and reported. Results. The response rate for the survey was 96% (341/355). A total of 94.1% (320/340) of schools have an EAP, 81.4% (276/339) of schools have an automated external defibrillator (AED) at all athletic venues, and 51.8% (176/340) of schools had an athletic trainer (AT) on staff. Urban schools were significantly more likely than rural schools to have an AT on staff (OR=11.10, 95% CI=[6.42, 19.18], p<0.0001), have an EAP (OR=3.69, 95% CI=[1.05, 13.02], p=0.0303), require additional training for coaches (OR=2.69, 95% CI=[1.42, 5.08], p =0.0017), and have an AED on-site for some events (OR=2.18, 95% CI=[1.24, 3.81], p=0.0057). Conclusions. Most Kansas high schools have an EAP in place and have at least 1 AED. Emergency planning should be improved through venue specific EAPs, access to early defibrillation, and additional training. Rural and low division schools have lower AT staffing and consequently are more significantly impacted by these factors. Rural and low division schools are more significantly impacted than urban and high division schools and this should be taken into account in future improvement strategies

    A joint inversion of receiver function and Rayleigh wave phase velocity dispersion data to estimate crustal structure in West Antarctica

    Get PDF
    We determine crustal shear-wave velocity structure and crustal thickness at recently deployed seismic stations across West Antarctica, using a joint inversion of receiver functions and fundamental mode Rayleigh wave phase velocity dispersion. The stations are from both the UK Antarctic Network (UKANET) and Polar Earth Observing Network/Antarctic Network (POLENET/ANET). The former include, for the first time, 4 stations along the spine of the Antarctic Peninsula, 3 in the Ellsworth Land and 5 stations in the vicinity of the Pine Island Rift. Within the West Antarctic Rift System (WARS) we model a crustal thickness range of 18-28 km, and show that the thinnest crust (∌18 km) is in the vicinity of the Byrd Subglacial Basin and Bentley Subglacial Trench. In these regions we also find the highest ratio of fast (Vs = 4.0-4.3 km/s) (likely mafic) lower crust to felsic/intermediate upper crust. The thickest mafic lower crust we model is in Ellsworth Land, a critical area for constraining the eastern limits of the WARS. Although we find thinner crust in this region (∌30 km) than in the neighbouring Antarctic Peninsula and Haag-Ellsworth Whitmore block (HEW), the Ellsworth Land crust has not undergone as much extension as the central WARS. This suggests that the WARS does not link with the Weddell Sea Rift System through Ellsworth Land, and instead has progressed during its formation towards the Bellingshausen and Amundsen Sea Embayments. We also find that the thin WARS crust extends towards the Pine Island Rift, suggesting that the boundary between the WARS and the Thurston Island block lies in this region, ∌200 km north of its previously accepted position. The thickest crust (38-40 km) we model in this study is in the Ellsworth Mountain section of the HEW block. We find thinner crust (30-33 km) in the Whitmore Mountains and Haag Nunatak sectors of the HEW, consistent with the composite nature of the block. In the Antarctic Peninsula we find a crustal thickness range of 30-38 km and a likely dominantly felsic/intermediate crustal composition. By forward modelling high frequency receiver functions we also assess if any thick, low velocity subglacial sediment accumulations are present, and find a 0.1-0.8 km thick layer at 10 stations within the WARS, Thurston Island and Ellsworth Land. We suggest that these units of subglacial sediment could provide a source region for the soft basal till layers found beneath numerous outlet glaciers, and may act to accelerate ice flow

    Mapping the optimal route between two quantum states

    Get PDF
    A central feature of quantum mechanics is that a measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. The ability to control a quantum system in the presence of these fluctuations is of increasing importance in quantum information processing and finds application in fields ranging from nuclear magnetic resonance to chemical synthesis. A detailed understanding of this stochastic evolution is essential for the development of optimized control methods. Here we reconstruct the individual quantum trajectories of a superconducting circuit that evolves in competition between continuous weak measurement and driven unitary evolution. By tracking individual trajectories that evolve between an arbitrary choice of initial and final states we can deduce the most probable path through quantum state space. These pre- and post-selected quantum trajectories also reveal the optimal detector signal in the form of a smooth time-continuous function that connects the desired boundary conditions. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wave function collapse, and unitary evolution of the quantum state as described by the Schrodinger equation. These results and the underlying theory, based on a principle of least action, reveal the optimal route from initial to final states, and may enable new quantum control methods for state steering and information processing.Comment: 12 pages, 9 figure

    A Multi-commodity network flow model for cloud service environments

    Get PDF
    Next-generation systems, such as the big data cloud, have to cope with several challenges, e.g., move of excessive amount of data at a dictated speed, and thus, require the investigation of concepts additional to security in order to ensure their orderly function. Resilience is such a concept, which when ensured by systems or networks they are able to provide and maintain an acceptable level of service in the face of various faults and challenges. In this paper, we investigate the multi-commodity flows problem, as a task within our D 2 R 2 +DR resilience strategy, and in the context of big data cloud systems. Specifically, proximal gradient optimization is proposed for determining optimal computation flows since such algorithms are highly attractive for solving big data problems. Many such problems can be formulated as the global consensus optimization ones, and can be solved in a distributed manner by the alternating direction method of multipliers (ADMM) algorithm. Numerical evaluation of the proposed model is carried out in the context of specific deployments of a situation-aware information infrastructure

    A preliminary study of the effect of closed incision management with negative pressure wound therapy over high-risk incisions

    Get PDF
    Background Certain postoperative wounds are recognised to be associated with more complications than others and may be termed high-risk. Wound healing can be particularly challenging following high-energy trauma where wound necrosis and infection rates are high. Surgical incision for joint arthrodesis can also be considered high-risk as it requires extensive and invasive surgery and postoperative distal limb swelling and wound dehiscence are common. Recent human literature has investigated the use of negative pressure wound therapy (NPWT) over high-risk closed surgical incisions and beneficial effects have been noted including decreased drainage, decreased dehiscence and decreased infection rates. In a randomised, controlled study twenty cases undergoing distal limb high-energy fracture stabilisation or arthrodesis were randomised to NPWT or control groups. All cases had a modified Robert-Jones dressing applied for 72 h postoperatively and NPWT was applied for 24 h in the NPWT group. Morphometric assessment of limb circumference was performed at six sites preoperatively, 24 and 72 h postoperatively. Wound discharge was assessed at 24 and 72 h. Postoperative analgesia protocol was standardised and a Glasgow Composite Measure Pain Score (GCPS) carried out at 24, 48 and 72 h. Complications were noted and differences between groups were assessed. Results Percentage change in limb circumference between preoperative and 24 and 72 h postoperative measurements was significantly less at all sites for the NPWT group with exception of the joint proximal to the surgical site and the centre of the operated bone at 72 h. Median discharge score was lower in the NPWT group than the control group at 24 h. No significant differences in GCPS or complication rates were noted. Conclusions Digital swelling and wound discharge were reduced when NPWT was employed for closed incision management. Larger studies are required to evaluate whether this will result in reduced discomfort and complication rates postoperatively

    Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback

    Full text link
    Quantum measurements not only extract information from a system but also alter its state. Although the outcome of the measurement is probabilistic, the backaction imparted on the measured system is accurately described by quantum theory. Therefore, quantum measurements can be exploited for manipulating quantum systems without the need for control fields. We demonstrate measurement-only state manipulation on a nuclear spin qubit in diamond by adaptive partial measurements. We implement the partial measurement via tunable correlation with an electron ancilla qubit and subsequent ancilla readout. We vary the measurement strength to observe controlled wavefunction collapse and find post-selected quantum weak values. By combining a novel quantum non-demolition readout on the ancilla with real-time adaption of the measurement strength we realize steering of the nuclear spin to a target state by measurements alone. Besides being of fundamental interest, adaptive measurements can improve metrology applications and are key to measurement-based quantum computing.Comment: 6 pages, 4 figure

    Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism

    Get PDF
    Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
    • 

    corecore