1,751 research outputs found

    Measures of Hip Function and Symptoms

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163446/2/acr24231_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163446/1/acr24231.pd

    Airborne sampling of aerosol particles: Comparison between surface sampling at Christmas Island and P-3 sampling during PEM-Tropics B

    Get PDF
    Bulk aerosol sampling of soluble ionic compounds from the NASA Wallops Island P-3 aircraft and a tower on Christmas Island during PEM-Tropics B provides an opportunity to assess the magnitude of particle losses in the University of New Hampshire airborne bulk aerosol sampling system. We find that most aerosol-associated ions decrease strongly with height above the sea surface, making direct comparisons between mixing ratios at 30 m on the tower and the lowest flight level of the P-3 (150 m) open to interpretation. Theoretical considerations suggest that vertical gradients of sea-salt aerosol particles should show exponential decreases with height. Observed gradients of Na+ and Mg2+, combining the tower observations with P-3 samples collected below 1 km, are well described by exponential decreases (r values of 0.88 and 0.87, respectively), though the curve fit underestimates average mixing ratios at the surface by 25%. Cascade impactor samples collected on the tower show that \u3e99% of the Na+ and Mg2+mass is on supermicron particles, 65% is in the 1–6 micron range, and just 20% resides on particles with diameters larger than 9 microns. These results indicate that our airborne aerosol sampling probes must be passing particles up to at least 6 microns with high efficiency. We also observed that nss SO42− and NH4+, which are dominantly on accumulation mode particles, tended to decrease between 150 and 1000 m, but they were often considerably higher at the lowest P-3 sampling altitudes than at the tower. This finding is presently not well understood

    Host–Guest Hybrid Redox Materials Self‐Assembled from Polyoxometalates and Single‐Walled Carbon Nanotubes

    Get PDF
    The development of next‐generation molecular‐electronic, electrocatalytic, and energy‐storage systems depends on the availability of robust materials in which molecular charge‐storage sites and conductive hosts are in intimate contact. It is shown here that electron transfer from single‐walled carbon nanotubes (SWNTs) to polyoxometalate (POM) clusters results in the spontaneous formation of host–guest POM@SWNT redox‐active hybrid materials. The SWNTs can conduct charge to and from the encapsulated guest molecules, allowing electrical access to >90% of the encapsulated redox species. Furthermore, the SWNT hosts provide a physical barrier, protecting the POMs from chemical degradation during charging/discharging and facilitating efficient electron transfer throughout the composite, even in electrolytes that usually destroy POMs

    Structural changes in gill DNA reveal the effects of contaminants on Puget Sound fish.

    Get PDF
    Structural differences were identified in gill DNA from two groups of English sole collected from Puget Sound, Washington, in October 2000. One group was from the industrialized Duwamish River (DR) in Seattle and the other from relatively clean Quartermaster Harbor (QMH). Chemical markers of sediment contamination [e.g., polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)] established that the DR was substantially more contaminated than QMH. The levels of these chemicals in the sediments of both sites were consistent with levels of cytochrome P450 1A (CYP1A) expression in the gills of English sole from the same sites. Structural differences in gill DNA between the groups were evinced via statistical models of Fourier transform-infrared (FT-IR) spectra. Marked structural damage was found in the gill DNA of the DR fish as reflected in differences in base functional groups (e.g., C-O and NH2) and conformational properties (e.g., arising from perturbations in vertical base stacking interactions). These DNA differences were used to discriminate between the two fish groups through principal components analysis of mean FT-IR spectra. In addition, logistic regression analysis allowed for the development of a "DNA damage index" to assess the effects of contaminants on the gill. The evidence implies that environmental chemicals contribute to the DNA changes in the gill. The damaged DNA is a promising marker for identifying, through gill biopsies, contaminant effects on fish

    Isotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes

    Get PDF
    Nitrous acid (HONO) is an important precursor to hydroxyl radical (OH) that determines atmospheric oxidative capacity and thus impacts climate and air quality. Wildfire is not only a major direct source of HONO, it also results in highly polluted conditions that favor the heterogeneous formation of HONO from nitrogen oxides (NOx= NO + NO2) and nitrate on both ground and particle surfaces. However, these processes remain poorly constrained. To quantitatively constrain the HONO budget under various fire and/or smoke conditions, we combine a unique dataset of field concentrations and isotopic ratios (15N / 14N and 18O / 16O) of NOx and HONO with an isotopic box model. Here we report the first isotopic evidence of secondary HONO production in near-ground wildfire plumes (over a sample integration time of hours) and the subsequent quantification of the relative importance of each pathway to total HONO production. Most importantly, our results reveal that nitrate photolysis plays a minor role (\u3c5 %) in HONO formation in daytime aged smoke, while NO2-to-HONO heterogeneous conversion contributes 85 %–95 % to total HONO production, followed by OH + NO (5 %–15 %). At nighttime, heterogeneous reduction of NO2 catalyzed by redox active species (e.g., iron oxide and/or quinone) is essential (≥ 75 %) for HONO production in addition to surface NO2 hydrolysis. Additionally, the 18O / 16O of HONO is used for the first time to constrain the NO-to-NO2 oxidation branching ratio between ozone and peroxy radicals. Our approach provides a new and critical way to mechanistically constrain atmospheric chemistry and/or air quality models on a diurnal timescale

    Effects of traumatic brain injury and posttraumatic stress disorder on development of Alzheimer's disease in Vietnam Veterans using the Alzheimer's Disease Neuroimaging Initiative: Preliminary report

    Get PDF
    Introduction Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) have previously been reported to be associated with increased risk of Alzheimer's disease (AD). We are using biomarkers to study Vietnam Veterans with/without mild cognitive impairment with a history of at least one TBI and/or ongoing PTSD to determine whether these contribute to the development of AD. Methods Potential subjects identified by Veterans Administration records underwent an initial telephone screen. Consented subjects underwent clinical evaluation, lumbar puncture, structural magnetic resonance imaging, and amyloid positron emission tomography (PET) scans. Results We observed worse cognitive functioning in PTSD and TBI + PTSD groups, worse global cognitive functioning in the PTSD group, lower superior parietal volume in the TBI + PTSD group, and lower amyloid positivity in the PTSD group, but not the TBI group compared to controls without TBI/PTSD. Medial temporal lobe atrophy was not increased in the PTSD and/or TBI groups. Discussion Preliminary results do not indicate that TBI or PTSD increase the risk for AD measured by amyloid PET. Additional recruitment, longitudinal follow-up, and tau-PET scans will provide more information in the future

    Host–Guest Chemistry in Boron Nitride Nanotubes: Interactions with Polyoxometalates and Mechanism of Encapsulation

    Get PDF
    Boron nitride nanotubes (BNNTs) are an emerging class of molecular container offering new functionalities and possibilities for studying molecules at the nanoscale. Herein, BNNTs are demonstrated as highly effective nanocontainers for polyoxometalate (POM) molecules. The encapsulation of POMs within BNNTs occurs spontaneously at room temperature from an aqueous solution, leading to the self-assembly of a POM@BNNT host−guest system. Analysis of the interactions between the host-nanotube and guest-molecule indicate that Lewis acid−base interactions between W=O groups of the POM (base) and B-atoms of the BNNT lattice (acid) likely play a major role in driving POM encapsulation, with photoactivated electron transfer from BNNTs to POMs in solution also contributing to the process. The transparent nature of the BNNT nanocontainer allows extensive investigation of the guest-molecules by photoluminescence, Raman, UV−vis absorption, and EPR spectroscopies. These studies revealed considerable energy and electron transfer processes between BNNTs and POMs, likely mediated via defect energy states of the BNNTs and resulting in the quenching of BNNT photoluminescence at room temperature, the emergence of new photoluminescence emissions at cryogenic temperatures (<100 K), a photochromic response, and paramagnetic signals from guest-POMs. These phenomena offer a fresh perspective on host−guest interactions at the nanoscale and open pathways for harvesting the functional properties of these hybrid systems

    Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes

    Get PDF
    We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-transfer interactions with SWNTs to provide detailed mechanistic insights into the redox-driven encapsulation of these and similar nanoclusters. We are able to correlate the relative redox potentials of the encapsulated clusters with the level of SWNT oxidation in the resultant hybrid materials and use this to show that precise redox tuning is a necessary requirement for successful encapsulation. The host–guest redox materials described here exhibit exceptional electrochemical stability, retaining up to 86 % of their charge capacity over 1000 oxidation/reduction cycles, despite the typical lability and solution-phase electrochemical instability of the polyoxomolybdates we have explored. Our findings illustrate the broad applicability of the redox-driven encapsulation approach to the design and fabrication of tunable, highly conductive, ultra-stable nanoconfined energy materials
    corecore