4,489 research outputs found

    Observations on Late Cretaceous \u3ci\u3eMicrampulla\u3c/i\u3e (Corethrales, Bacillariophyceae) from the Campbell Plateau (Zealandia), southwest Pacific Ocean

    Get PDF
    Late Cretaceous (late Campanian) diatom assemblages from the Campbell Plateau (Zealandia), southwest Pacific Ocean, obtained from Deep Sea Drilling Project (DSDP) Leg 29 Site 275, contain well-preserved specimens of two enigmatic diatom species currently assigned to the genus Ktenodiscus; Micrampulla parvula originally described from the Maastrichtian-age Moreno Shale, California, and Pterotheca cretacea from DSDP Site 275. In general, the two species share a number of common features with modern Corethron (domed valves, probable heterovalvate frustules, T-shaped serrated articulated spines, marginal sockets), but differ in the location of the sockets (i.e. vertically at the base of the valve dome and not on the rim), the design of the spines and sockets, and the hollow structure extending from the valve center. Although hooked spines are absent, equivalent 1-spine and 2-spine valves can be recognized in these two species. The recently described genus Praecorethron from the same late Campanian sediments shares many features with Micrampulla, but lacks the inflated central valve structure. As a result of our studies, the relevant subclass, order and family definitions are emended, as well as those of Micrampulla, M. parvula and M. cretacea comb. nov., and a new family, Micrampullaceae fam. nov., is erected to distinguish the ancient genera (Micrampulla and Praecorethron) from modern Corethron

    Interferometric weak value deflections: quantum and classical treatments

    Get PDF
    We derive the weak value deflection given in a paper by Dixon et al. (Phys. Rev. Lett. 102, 173601 (2009)) both quantum mechanically and classically. This paper is meant to cover some of the mathematical details omitted in that paper owing to space constraints

    Novel Roles for Selected Genes in Meiotic DNA Processing

    Get PDF
    High-throughput studies of the 6,200 genes of Saccharomyces cerevisiae have provided valuable data resources. However, these resources require a return to experimental analysis to test predictions. An in-silico screen, mining existing interaction, expression, localization, and phenotype datasets was developed with the aim of selecting minimally characterized genes involved in meiotic DNA processing. Based on our selection procedure, 81 deletion mutants were constructed and tested for phenotypic abnormalities. Eleven (13.6%) genes were identified to have novel roles in meiotic DNA processes including DNA replication, recombination, and chromosome segregation. In particular, this analysis showed that Def1, a protein that facilitates ubiquitination of RNA polymerase II as a response to DNA damage, is required for efficient synapsis between homologues and normal levels of crossover recombination during meiosis. These characteristics are shared by a group of proteins required for Zip1 loading (ZMM proteins). Additionally, Soh1/Med31, a subunit of the RNA pol II mediator complex, Bre5, a ubiquitin protease cofactor and an uncharacterized protein, Rmr1/Ygl250w, are required for normal levels of gene conversion events during meiosis. We show how existing datasets may be used to define gene sets enriched for specific roles and how these can be evaluated by experimental analysis

    Preparing ground states of quantum many-body systems on a quantum computer

    Full text link
    Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt(N). Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.Comment: 7 pages, 1 figur

    Gravitational Wave Emission from the Single-Degenerate Channel of Type Ia Supernovae

    Full text link
    The thermonuclear explosion of a C/O white dwarf as a Type Ia supernova (SN Ia) generates a kinetic energy comparable to that released by a massive star during a SN II event. Current observations and theoretical models have established that SNe Ia are asymmetric, and therefore--like SNe II--potential sources of gravitational wave (GW) radiation. We perform the first detailed calculations of the GW emission for a SN Ia of any type within the single-degenerate channel. The gravitationally-confined detonation (GCD) mechanism predicts a strongly-polarized GW burst in the frequency band around 1 Hz. Third-generation spaceborne GW observatories currently in planning may be able to detect this predicted signal from SNe Ia at distances up to 1 Mpc. If observable, GWs may offer a direct probe into the first few seconds of the SNe Ia detonation.Comment: 8 pages, 4 figures, Accepted by Physical Review Letter
    corecore