20 research outputs found

    Mass Spectrometry for Identification, Monitoring, and Minimal Residual Disease Detection of M-Proteins

    Get PDF
    BACKGROUND: Monoclonal gammopathies (MGs) are plasma cell disorders defined by the clonal expansion of plasma cells, resulting in the characteristic excretion of a monoclonal immunoglobulin (M-protein). M-protein detection and quantification are integral parts of the diagnosi

    Umbilical cord-mesenchymal stem cells induce a memory phenotype in CD4+ T cells

    Get PDF
    Inflammation is a physiological state where immune cells evoke a response against detrimental insults. Finding a safe and effective treatment for inflammation associated diseases has been a challenge. In this regard, human mesenchymal stem cells (hMSC), exert immunomodulatory effects and have regenerative capacity making it a promising therapeutic option for resolution of acute and chronic inflammation. T cells play a critical role in inflammation and depending on their phenotype, they can stimulate or suppress inflammatory responses. However, the regulatory effects of hMSC on T cells and the underlying mechanisms are not fully elucidated. Most studies focused on activation, proliferation, and differentiation of T cells. Here, we further investigated memory formation and responsiveness of CD4+ T cells and their dynamics by immune-profiling and cytokine secretion analysis. Umbilical cord mesenchymal stem cells (UC-MSC) were co-cultured with either αCD3/CD28 beads, activated peripheral blood mononuclear cells (PBMC) or magnetically sorted CD4+ T cells. The mechanism of immune modulation of UC-MSC were investigated by comparing different modes of action; transwell, direct cell-cell contact, addition of UC-MSC conditioned medium or blockade of paracrine factor production by UC-MSC. We observed a differential effect of UC-MSC on CD4+ T cell activation and proliferation using PBMC or purified CD4+ T cell co-cultures. UC-MSC skewed the effector memory T cells into a central memory phenotype in both co-culture conditions. This effect on central memory formation was reversible, since UC-MSC primed central memory cells were still responsive after a second encounter with the same stimuli. The presence of both cell-cell contact and paracrine factors were necessary for the most pronounced immunomodulatory effect of UC-MSC on T cells. We found suggestive evidence for a partial role of IL-6 and TGFβ in the UC-MSC derived immunomodulatory function. Collectively, our data show that UC-MSCs clearly affect T cell activation, proliferation and maturation, depending on co-culture conditions for which both cell-cell contact and paracrine factors are needed

    Seasonal Variation in Vitamin D3 Levels Is Paralleled by Changes in the Peripheral Blood Human T Cell Compartment

    Get PDF
    It is well-recognized that vitamin D3 has immune-modulatory properties and that the variation in ultraviolet (UV) exposure affects vitamin D3 status. Here, we investigated if and to what extent seasonality of vitamin D3 levels are associated with changes in T cell numbers and phenotypes. Every three months during the course of the entire year, human PBMC and whole blood from 15 healthy subjects were sampled and analyzed using flow cytometry. We observed that elevated serum 25(OH)D3 and 1,25(OH)2D3 levels in summer were associated with a higher number of peripheral CD4+ and CD8+ T cells. In addition, an increase in naïve CD4+CD45RA+ T cells with a reciprocal drop in memory CD4+CD45RO+ T cells was observed. The increase in CD4+CD45RA+ T cell count was a result of heightened proliferative capacity rather than recent thymic emigration of T cells. The percentage of Treg dropped in summer, but not the absolute Treg numbers. Notably, in the Treg population, the levels of forkhead box protein 3 (Foxp3) expression were increased in summer. Skin, gut and lymphoid tissue homing potential was increased during summer as well, exemplified by increased CCR4, CCR6, CLA, CCR9 and CCR7 levels. Also, in summer, CD4+ and CD8+ T cells revealed a reduced capacity to produce pro-inflammatory cytokines. In conclusion, seasonal variation in vitamin D3 status in vivo throughout the year is associated with changes in the human peripheral T cell compartment and may as such explain some of the seasonal variation in immune status which has been observed previously. Given that the current observations are limited to healthy adult males, larger population-based studies would be useful to validate these findings

    PIRCHE-II is related to graft failure after kidney transplantation

    Get PDF
    Individual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in de novo donor-specific HLA antibodies formation after kidney transplantation. In the present Dutch multi-center study, we evaluated the possible association between PIRCHE-II and kidney graft failure in 2,918 donor-recipient couples that were transplanted between 1995 and 2005. For these donors-recipients couples, PIRCHE-II numbers were related to graft survival in univariate and multivariable analyses. Adjusted for confounders, the natural logarithm of PIRCHE-II was associated with a higher risk for graft failure [hazard ratio (HR): 1.13, 95% CI: 1.04-1.23, p = 0.003]. When analyzing a subgroup of patients who had their first transplantation, the HR of graft failure for ln(PIRCHE-II) was higher compared with the overall cohort (HR: 1.22, 95% CI: 1.10-1.34, p < 0.001). PIRCHE-II demonstrated both early and late effects on graft failure in this subgroup. These data suggest that the PIRCHE-II may impact graft survival after kidney transplantation. Inclusion of PIRCHE-II in donor-selection criteria may eventually lead to an improved kidney graft survival

    Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    Get PDF
    Contains fulltext : 108719.pdf (publisher's version ) (Open Access)BACKGROUND: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli and pathway inhibitors. Results from these experiments were validated in a human experimental setting using whole blood and purified CD4+ Tcells. RESULTS: Calcium-dependent activation of T cells using CD3/CD28 and PMA/CD3 stimulation induced a Th1 expression profile reflected by increased expression of T-bet, RUNX3, IL-2, and IFNgamma, whereas calcium-independent activation via PMA/CD28 induced a Th2 expression profile which included GATA3, RXRA, CCL1 and Itk. Knock down with siRNA and gene expression profiling in the presence of selective kinase inhibitors showed that proximal kinases Lck and PKCtheta are crucial signaling hubs during T helper cell activation, revealing a clear role for Lck in Th1 development and for PKCtheta in both Th1 and Th2 development. Medial signaling via MAPkinases appeared to be less important in these pathways, since specific inhibitors of these kinases displayed a minor effect on gene expression. Translation towards a primary, whole blood setting and purified human CD4+ T cells revealed that PMA/CD3 stimulation induced a more pronounced Th1 specific, Lck and PKCtheta dependent IFNgamma production, whereas PMA/CD28 induced Th2 specific IL-5 and IL-13 production, independent of Lck activation. PMA/CD3-mediated skewing towards a Th1 phenotype was also reflected in mRNA expression of the master transcription factor Tbet, whereas PMA/CD28-mediated stimulation enhanced GATA3 mRNA expression in primary human CD4+ Tcells. CONCLUSIONS: This study identifies stimulatory pathways and gene expression profiles for in vitro skewing of T helper cell activation. PMA/CD3 stimulation enhances a Th1-like response in an Lck and PKCtheta dependent fashion, whereas PMA/CD28 stimulation results in a Th2-like phenotype independent of the proximal TCR-tyrosine kinase Lck. This approach offers a robust and fast translational in vitro system for skewed T helper cell responses in Jurkat T cells, primary human CD4+ Tcells and in a more complex matrix such as human whole blood

    Antibodies against ARHGDIB are associated with long-term kidney graft loss

    Get PDF
    The clinical significance of non‐HLA antibodies on renal allograft survival is a matter of debate, due to differences in reported results and lack of large‐scale studies incorporating analysis of multiple non‐HLA antibodies simultaneously. We developed a multiplex non‐HLA antibody assay against 14 proteins highly expressed in the kidney. In this study, the presence of pretransplant non‐HLA antibodies was corre

    Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to nonsensitized patients

    Get PDF
    Whereas regular allocation avoids unacceptable mismatches on the donor organ, allocation to highly sensitized patients within the Eurotransplant Acceptable Mismatch (AM) program is based on the patient\'s HLA phenotype plus acceptable antigens. These are HLA antigens to which the patient never made antibodies, as determined by extensive laboratory testing. AM patients have superior long-term graft survival compared with highly sensitized patients in regular allocation. Here, we questioned whether the AM program also results in lower rejection rates. From the PROCARE cohort, consisting of all Dutch kidney transplants in 1995-2005, we selected deceased donor single transplants with a minimum of 1 HLA mismatch and determined the cumulative 6-month rejection incidence for patients in AM or regular allocation. Additionally, we determined the effect of minimal matching criteria of 1 HLA-B plus 1 HLA-DR, or 2 HLA-DR antigens on rejection incidence. AM patients showed significantly lower rejection rates than highly immunized patients in regular allocation, comparable to nonsensitized patients, independent of other risk factors for rejection. In contrast to highly sensitized patients in regular allocation, minimal matching criteria did not affect rejection rates in AM patients. Allocation based on acceptable antigens leads to relatively low-risk transplants for highly sensitized patients with rejection rates similar to those of nonimmunized individuals

    Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to nonsensitized patients

    Get PDF
    Whereas regular allocation avoids unacceptable mismatches on the donor organ, allocation to highly sensitized patients within the Eurotransplant Acceptable Mismatch (AM) program is based on the patient's HLA phenotype plus acceptable antigens. These are HLA antigens to which the patient never made antibodies, as determined by extensive laboratory testing. AM patients have superior long-term graft survival compared with highly sensitized patients in regular allocation. Here, we questioned whether the AM program also results in lower rejection rates. From the PROCARE cohort, consisting of all Dutch kidney transplants in 1995-2005, we selected deceased donor single transplants with a minimum of 1 HLA mismatch and determined the cumulative 6-month rejection incidence for patients in AM or regular allocation. Additionally, we determined the effect of minimal matching criteria of 1 HLA-B plus 1 HLA-DR, or 2 HLA-DR antigens on rejection incidence. AM patients showed significantly lower rejection rates than highly immunized patients in regular allocation, comparable to nonsensitized patients, independent of other risk factors for rejection. In contrast to highly sensitized patients in regular allocation, minimal matching criteria did not affect rejection rates in AM patients. Allocation based on acceptable antigens leads to relatively low-risk transplants for highly sensitized patients with rejection rates similar to those of nonimmunized individuals

    Determination of the clinical relevance of donor epitope-specific HLA-antibodies in kidney transplantation

    Get PDF
    In kidney transplantation, survival rates are still partly impaired due to the deleterious effects of donor specific HLA antibodies (DSA). However, not all luminex-defined DSA appear to be clinically relevant. Further analysis of DSA recognizing polymorphic amino acid configurations, called eplets or functional epitopes, might improve the discrimination between clinically relevant vs. irrelevant HLA antibodies. To evaluate which donor epitope-specific HLA antibodies (DESAs) are clinically important in kidney graft survival, relevant and irrelevant DESAs were discerned in a Dutch cohort of 4690 patients using Kaplan-Meier analysis and tested in a cox proportional hazard (CPH) model including nonimmunological variables. Pre-transplant DESAs were detected in 439 patients (9.4%). The presence of certain clinically relevant DESAs was significantly associated with increased risk on graft loss in deceased donor transplantations (p < 0.0001). The antibodies recognized six epitopes of HLA Class I, 3 of HLA-DR, and 1 of HLA-DQ, and most antibodies were directed to HLA-B (47%). Fifty-three patients (69.7%) had DESA against one donor epitope (range 1-5). Long-term graft survival rate in patients with clinically relevant DESA was 32%, rendering DESA a superior parameter to classical DSA (60%). In the CPH model, the hazard ratio (95% CI) of clinically relevant DESAs was 2.45 (1.84-3.25) in deceased donation, and 2.22 (1.25-3.95) in living donation. In conclusion, the developed model shows the deleterious effect of clinically relevant DESAs on graft outcome which outperformed traditional DSA-based risk analysis on antigen level

    Bimodal Targeting of Human Leukocytes by Fc- And CpG-Decorated Polymersomes to Tune Immune Induction

    Get PDF
    The use of well-defined nanovesicles composed of amphiphilic block copolymers (polymersomes) for delivery of adjuvants and antigens is a promising strategy for vaccine development. However, the potency of nanoparticle vaccines depends on efficient interaction with and activation of cells involved in antigen presentation, which can be achieved by targeting cellular receptors. Here, we showed that the Fc fragment display on the polymersome surface resulted in markedly improved interactions with granulocytes, monocytes, and NK cells, while for "naked"polymersomes, virtually no binding to leukocytes was observed. Moreover, CpG-decorated polymersomes were found to also interact with T and/or B cells. Interestingly, whole blood stimulations with Fc fragment and CpG-decorated polymersomes induced interleukin (IL)-6, IL-8, and TNF-α production, while naked polymersomes did not induce any cytokine production. In conclusion, specific immune induction by polymersomes can be controlled using bimodal targeting of different immune receptors, which is an essential feature for targeted vaccine delivery
    corecore