2,133 research outputs found

    CO2 and non-CO2 radiative forcings in climate projections for twenty-first century mitigation scenarios

    Get PDF
    Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle-climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse-response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the centur

    Probabilistic climate change projections using neural networks

    Get PDF
    Anticipated future warming of the climate system increases the need for accurate climate projections. A central problem are the large uncertainties associated with these model projections, and that uncertainty estimates are often based on expert judgment rather than objective quantitative methods. Further, important climate model parameters are still given as poorly constrained ranges that are partly inconsistent with the observed warming during the industrial period. Here we present a neural network based climate model substitute that increases the efficiency of large climate model ensembles by at least an order of magnitude. Using the observed surface warming over the industrial period and estimates of global ocean heat uptake as constraints for the ensemble, this method estimates ranges for climate sensitivity and radiative forcing that are consistent with observations. In particular, negative values for the uncertain indirect aerosol forcing exceeding -1.2Wm-2 can be excluded with high confidence. A parameterization to account for the uncertainty in the future carbon cycle is introduced, derived separately from a carbon cycle model. This allows us to quantify the effect of the feedback between oceanic and terrestrial carbon uptake and global warming on global temperature projections. Finally, probability density functions for the surface warming until year 2100 for two illustrative emission scenarios are calculated, taking into account uncertainties in the carbon cycle, radiative forcing, climate sensitivity, model parameters and the observed temperature records. We find that warming exceeds the surface warming range projected by IPCC for almost half of the ensemble members. Projection uncertainties are only consistent with IPCC if a model-derived upper limit of about 5K is assumed for climate sensitivit

    Sum Rules for the Dirac Spectrum of the Schwinger Model

    Full text link
    The inverse eigenvalues of the Dirac operator in the Schwinger model satisfy the same Leutwyler-Smilga sum rules as in the case of QCD with one flavor. In this paper we give a microscopic derivation of these sum rules in the sector of arbitrary topological charge. We show that the sum rules can be obtained from the clustering property of the scalar correlation functions. This argument also holds for other theories with a mass gap and broken chiral symmetry such as QCD with one flavor. For QCD with several flavors a modified clustering property is derived from the low energy chiral Lagrangian. We also obtain sum rules for a fixed external gauge field and show their relation with the bosonized version of the Schwinger model. In the sector of topological charge ν\nu the sum rules are consistent with a shift of the Dirac spectrum away from zero by ν/2\nu/2 average level spacings. This shift is also required to obtain a nonzero chiral condensate in the massless limit. Finally, we discuss the Dirac spectrum for a closely related two-dimensional theory for which the gauge field action is quadratic in the the gauge fields. This theory of so called random Dirac fermions has been discussed extensively in the context of the quantum Hall effect and d-wave super-conductors.Comment: 41 pages, Late

    The Fermionic Projector, Entanglement, and the Collapse of the Wave Function

    Get PDF
    After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.Comment: 17 pages, LaTeX, 2 figures, minor changes (published version

    On the precise connection between the GRW master-equation and master-equations for the description of decoherence

    Get PDF
    We point out that the celebrated GRW master-equation is invariant under translations, reflecting the homogeneity of space, thus providing a particular realization of a general class of translation-covariant Markovian master-equations. Such master-equations are typically used for the description of decoherence due to momentum transfers between system and environment. Building on this analogy we show the exact relationship between the GRW master-equation and decoherence master-equations, further providing a collisional decoherence model formally equivalent to the GRW master-equation. This allows for a direct comparison of order of magnitudes of relevant parameters. This formal analogy should not lead to confusion on the utterly different spirit of the two research fields, in particular it has to be stressed that the decoherence approach does not lead to a solution of the measurement problem. Building on this analogy however the feasibility of the extension of spontaneous localization models in order to avoid the infinite energy growth is discussed. Apart from a particular case considered in the paper, it appears that the amplification mechanism is generally spoiled by such modifications.Comment: 9 pages, latex, no figures, to appear on J. Phys.

    Initial correlations effects on decoherence at zero temperature

    Full text link
    We consider a free charged particle interacting with an electromagnetic bath at zero temperature. The dipole approximation is used to treat the bath wavelengths larger than the width of the particle wave packet. The effect of these wavelengths is described then by a linear Hamiltonian whose form is analogous to phenomenological Hamiltonians previously adopted to describe the free particle-bath interaction. We study how the time dependence of decoherence evolution is related with initial particle-bath correlations. We show that decoherence is related to the time dependent dressing of the particle. Moreover because decoherence induced by the T=0 bath is very rapid, we make some considerations on the conditions under which interference may be experimentally observed.Comment: 16 pages, 1 figur

    Quantum open systems and turbulence

    Full text link
    We show that the problem of non conservation of energy found in the spontaneous localization model developed by Ghirardi, Rimini and Weber is very similar to the inconsistency between the stochastic models for turbulence and the Navier-Stokes equation. This sort of analogy may be useful in the development of both areas.Comment: to appear in Physical Review

    A model of quantum reduction with decoherence

    Full text link
    The problem of reduction (wave packet reduction) is reexamined under two simple conditions: Reduction is a last step completing decoherence. It acts in commonplace circumstances and should be therefore compatible with the mathematical frame of quantum field theory and the standard model. These conditions lead to an essentially unique model for reduction. Consistency with renormalization and time-reversal violation suggest however a primary action in the vicinity of Planck's length. The inclusion of quantum gravity and the uniqueness of space-time point moreover to generalized quantum theory, first proposed by Gell-Mann and Hartle, as a convenient framework for developing this model into a more complete theory.Comment: 20 pages. To be published in Physical Review

    Theory of 'which path' dephasing in single electron interference due to trace in conductive environment

    Full text link
    A single-electron two-path interference (Young) experiment is considered theoretically. The decoherence of an electron wave packet due to the 'which path' trace left in the conducting (metallic) plate placed under the electron trajectories is calculated using the many-body quantum description of the electron gas reservoir.Comment: 11 pages, 5 figures, moderate changes, 1 new figure, updated reference

    Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection

    Get PDF
    The driven non-linear duffing osillator is a very good, and standard, example of a quantum mechanical system from which classical-like orbits can be recovered from unravellings of the master equation. In order to generated such trajectories in the phase space of this oscillator in this paper we use a the quantum jumps unravelling together with a suitable application of the correspondence principle. We analyse the measured readout by considering the power spectra of photon counts produced by the quantum jumps. Here we show that localisation of the wave packet from the measurement of the oscillator by the photon detector produces a concomitant structure in the power spectra of the measured output. Furthermore, we demonstrate that this spectral analysis can be used to distinguish between different modes of the underlying dynamics of the oscillator.Comment: 7 pages, 6 figure
    • …
    corecore