13 research outputs found

    Decreased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer

    Get PDF
    Contains fulltext : 88137.pdf (publisher's version ) (Open Access)PURPOSE: To determine the variation in target delineation of nasopharyngeal carcinoma and the impact of measures to minimize this variation. MATERIALS AND METHODS: For ten nasopharyngeal cancer patients, ten observers each delineated the Clinical Target Volume (CTV) and the CTV elective. After 3D analysis of the delineated volumes, a second delineation was performed. This implied improved delineation instructions, a combined delineation on CT and co-registered MRI, forced use of sagittal reconstructions, and an on-line anatomical atlas. RESULTS: Both for the CTV and the CTV elective delineations, the 3D SD decreased from Phase 1 to Phase 2, from 4.4 to 3.3 mm for the CTV and from 5.9 to 4.9 mm for the elective. There was an increase agreement, where the observers intended to delineate the same structure, from 36 to 64 surface % (p = 0.003) for the CTV and from 17 to 59% (p = 0.004) for the elective. The largest variations were at the caudal border of the delineations but these were smaller when an observer utilized the sagittal window. Hence, the use of sagittal side windows was enforced in the second phase and resulted in a decreased standard deviation for this area from 7.7 to 3.3 mm (p = 0.001) for the CTV and 7.9 to 5.6 mm (p = 0.03) for the CTV elective. DISCUSSION: Attempts to decrease the variation need to be tailored to the specific causes of the variation. Use of delineation instructions multimodality imaging, the use of sagittal windows and an on-line atlas result in a higher agreement on the intended target

    3D Variation in delineation of head and neck organs at risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consistent delineation of patient anatomy becomes increasingly important with the growing use of highly conformal and adaptive radiotherapy techniques. This study investigates the magnitude and 3D localization of interobserver variability of organs at risk (OARs) in the head and neck area with application of delineation guidelines, to establish measures to reduce current redundant variability in delineation practice.</p> <p>Methods</p> <p>Interobserver variability among five experienced radiation oncologists was studied in a set of 12 head and neck patient CT scans for the spinal cord, parotid and submandibular glands, thyroid cartilage, and glottic larynx. For all OARs, three endpoints were calculated: the Intraclass Correlation Coefficient (ICC), the Concordance Index (CI) and a 3D measure of variation (3D SD).</p> <p>Results</p> <p>All endpoints showed largest interobserver variability for the glottic larynx (ICC = 0.27, mean CI = 0.37 and 3D SD = 3.9 mm). Better agreement in delineations was observed for the other OARs (range, ICC = 0.32-0.83, mean CI = 0.64-0.71 and 3D SD = 0.9-2.6 mm). Cranial, caudal, and medial regions of the OARs showed largest variations. All endpoints provided support for improvement of delineation practice.</p> <p>Conclusions</p> <p>Variation in delineation is traced to several regional causes. Measures to reduce this variation can be: (1) guideline development, (2) joint delineation review sessions and (3) application of multimodality imaging. Improvement of delineation practice is needed to standardize patient treatments.</p

    Tumor motion and deformation during external radiotherapy of bladder cancer.

    No full text
    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial–caudal and anterior–posterior direction (SD, 0.1 to ∼0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall

    Impact of coronal and sagittal views on lung gross tumor volume delineation

    No full text
    To study the impact of coronal and sagittal views (CSV) on the gross tumor volume (GTV) delineation on CT and matched PET/CT scans in non-small cell lung cancer. GTV delineations were performed by 11 experienced radiation oncologists on CT and PET/CT in 22 patients. Two tumor groups were defined: Group I: Primary tumors surrounded by lung or visceral pleura, without venous invasion, and without large extensions to the chest wall or the mediastinum. Group II: Tumors invading the hilar region, heart, large vessels, pericardium, and the mediastinum and/or associated with atelectasis. Tumor volumes and inter-observers variations (SD) were calculated and compared according to the use of axial view only (AW), axial/coronal/sagittal views (ACSW) and ACSW/PET (ACSWP). CSV were not frequently used (57.4% out of 242 delineations on CT). For group I, ACSW didn't improve significantly mean GTVs. SDs were small on CT and on PET (SD=0.3cm). For group II, ACSW had 27-46% smaller observer variation (mean SD=0.7cm) than AW (mean SD=1.1cm). The smaller observer variation of ACSW users was associated with, on average, a 40% smaller delineated volume (p=0.038). Mean GTV of ACSWP was 21% larger than mean GTV of ACSW on CT. For smaller lung tumors surrounded by healthy lung tissue the effect of multiple axis delineation is limited. However, application of coronal and sagittal windows is highly beneficial for delineation of more complex tumors, with atelectasis and/or pathological lymph nodes even if PET is use

    Impact of anatomical location on value of CT-PET co-registration for delineation of lung tumors.

    No full text
    PURPOSE: To derive guidelines for the need to use positron emission tomography (PET) for delineation of the primary tumor (PT) according to its anatomical location in the lung. METHODS AND MATERIALS: In 22 patients with non-small-cell lung cancer, thoracic X-ray computed tomography (CT) and PET were performed. Eleven radiation oncologists delineated the PT on the CT and on the CT-PET registered scans. The PTs were classified into two groups. In Group I patients, the PT was surrounded by lung or visceral pleura, without venous invasion, without extension to chest wall or the mediastinum over more than one quarter of its surface. In Group II patients, the PT invaded the hilar region, heart, great vessels, pericardium, mediastinum over more than one quarter of its surface and/or associated with atelectasis. A comparison of interobserver variability for each group was performed and expressed as a local standard deviation. RESULTS: The comparison of delineations showed a good reproducibility for Group I, with an average SD of 0.4 cm on CT and an average SD of 0.3 cm on CT-PET (p = 0.1628). There was also a significant improvement with CT-PET for Group II, with an average SD of 1.3 cm on CT and SD of 0.4 cm on CT-PET (p = 0.0003). The improvement was mainly located at the atelectasis/tumor interface. At the tumor/lung and tumor/hilum interfaces, the observer variation was similar with both modalities. CONCLUSIONS: Using PET for PT delineation is mandatory to decrease interobserver variability in the hilar region, heart, great vessels, pericardium, mediastinum, and/or the region associated with atelectasis; however it is not essential for delineation of PT surrounded by lung or visceral pleura, without venous invasion or extension to the chest wal

    Impact of knee support and shape of tabletop on rectum and prostate position.

    No full text
    PURPOSE: To evaluate the impact of different tabletops with or without a knee support on the position of the rectum, prostate, and bulb of the penis; and to evaluate the effect of these patient-positioning devices on treatment planning. METHODS AND MATERIALS: For 10 male volunteers, five MRI scans were made in four different positions: on a flat tabletop with knee support, on a flat tabletop without knee support, on a rounded tabletop with knee support, and on a rounded tabletop without knee support. The fifth scan was in the same position as the first. With image registration, the position differences of the rectum, prostate, and bulb of the penis were measured at several points in a sagittal plane through the central axis of the prostate. A planning target volume was generated from the delineated prostates with a margin of 10 mm in three dimensions. A three-field treatment plan with a prescribed dose of 78 Gy to the International Commission on Radiation Units and Measurements point was automatically generated from each planning target volume. Dose-volume histograms were calculated for all rectal walls. RESULTS: The shape of the tabletop did not affect the rectum and prostate position. Addition of a knee support shifted the anterior and posterior rectal walls dorsally. For the anterior rectal wall, the maximum dorsal shift was 9.9 mm (standard error of the mean [SEM] 1.7 mm) at the top of the prostate. For the posterior rectal wall, the maximum dorsal shift was 10.2 mm (SEM 1.5 mm) at the middle of the prostate. Therefore, the rectal filling was pushed caudally when a knee support was added. The knee support caused a rotation of the prostate around the left-right axis at the apex (i.e., a dorsal rotation) by 5.6 degrees (SEM 0.8 degrees ) and shifts in the caudal and dorsal directions of 2.6 mm (SEM 0.4 cm) and 1.4 mm (SEM 0.6 mm), respectively. The position of the bulb of the penis was not influenced by the use of a knee support or rounded tabletop. The volume of the rectal wall receiving the same dose range (e.g., 40-75 Gy) was reduced by 3.5% (SEM 0.9%) when a knee support was added. No significant differences were observed between the first and fifth scan (flat tabletop with knee support) for all measured points, thereby excluding time trends. CONCLUSIONS: The rectum and prostate were significantly shifted dorsally by the use of a knee support. The rectum shifted more than the prostate, resulting in a dose benefit compared with irradiation without knee support. The shape of the tabletop did not influence the rectum or prostate positio

    Retrospective attenuation correction of PET data for radiotherapy planning using a free breathing CT

    No full text
    PURPOSE: To evaluate the image quality of retrospectively attenuation corrected Positron Emission Tomography (PET) scans used for gross tumor volume (GTV) delineation in lung cancer patients. MATERIALS AND METHODS: Data of 13 lymph node positive lung cancer patients were acquired on separate CT and PET scanners under free breathing conditions (for radiotherapy planning). First we determined a protocol for CT/PET registration. Second, we compared the image quality of attenuation-corrected PET images using positron transmission images and CT images, in terms of signal-to-noise ratio (SNR) and lesion-to-background ratio (contrast). RESULTS: The largest differences between manual and automatic CT/PET registration were found in the anterior-posterior direction with a mean of 1.8 mm (SD 1.0 mm). Differences in rotations were always smaller than 1.0 degrees . The attenuation-corrected images using CT showed a larger SNR (mean 30%, SD 17%) and larger contrast (mean 14.0%, SD 8.5%) compared to attenuation-corrected images using positron transmission. For lymph nodes, the mean contrast was 16% (SD 6.4%) larger. CONCLUSIONS: This study demonstrated that attenuation correction based on CT provides a better image quality for GTV delineation than when using positron transmission for attenuation correction. Retrospective attenuation correction of PET scans based on registered CT is a good alternative for a dedicated PET/CT scanner if a free-breathing CT is available, e.g., for radiotherapy planning, and allows the use of CT with diagnostic quality for attenuation correctio

    Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a 'Big Brother' evaluation.

    No full text
    Contains fulltext : 49013.pdf (publisher's version ) (Closed access)BACKGROUND AND PURPOSE: To evaluate the process of target volume delineation in lung cancer for optimization of imaging, delineation protocol and delineation software. PATIENTS AND METHODS: Eleven radiation oncologists (observers) from five different institutions delineated the Gross Tumor Volume (GTV) including positive lymph nodes of 22 lung cancer patients (stages I-IIIB) on CT only. All radiation oncologist-computer interactions were recorded with a tool called 'Big Brother'. For each radiation oncologist and patient the following issues were analyzed: delineation time, number of delineated points and corrections, zoom levels, level and window (L/W) settings, CT slice changes, use of side windows (coronal and sagittal) and software button use. RESULTS: The mean delineation time per GTV was 16 min (SD 10 min). The mean delineation time for lymph node positive patients was on average 3 min larger (P = 0.02) than for lymph node negative patients. Many corrections (55%) were due to L/W change (e.g. delineating in mediastinum L/W and then correcting in lung L/W). For the lymph node region, a relatively large number of corrections was found (3.7 corr/cm2), indicating that it was difficult to delineate lymph nodes. For the tumor-atelectasis region, a relative small number of corrections was found (1.0 corr/cm2), indicating that including or excluding atelectasis into the GTV was a clinical decision. Inappropriate use of L/W settings was frequently found (e.g. 46% of all delineated points in the tumor-lung region were delineated in mediastinum L/W settings). Despite a large observer variation in cranial and caudal direction of 0.72 cm (1 SD), the coronal and sagittal side windows were not used in 45 and 60% of the cases, respectively. For the more difficult cases, observer variation was smaller when the coronal and sagittal side windows were used. CONCLUSIONS: With the 'Big Brother' tool a method was developed to trace the delineation process. The differences between observers concerning the delineation style were large. This study led to recommendations on how to improve delineation accuracy by adapting the delineation protocol (guidelines for L/W use) and delineation software (double window with lung and mediastinum L/W settings at the same time, enforced use of coronal and sagittal views) and including FDG-PET information (lymph nodes and atelectasis)
    corecore