11 research outputs found

    Analyzing Spatial Differences in the TLS Security of Delegated Web Services

    No full text
    © 2021 ACM.To provide secure content delivery, Transport Layer Security (TLS) has become a de facto standard over a couple of decades. However, TLS has a long history of security weaknesses and drawbacks. Thus, the security of TLS has been enhanced by addressing security problems through continuous version upgrades. Meanwhile, to provide fast content delivery globally, websites (or origin web servers) need to deploy and administer many machines in globally distributed environments. They often delegate the management of machines to web hosting services or content delivery networks (CDNs), where the security configurations of distributed servers may vary spatially depending on the managing entities or locations. Based on these spatial differences in TLS security, we find that the security level of TLS connections (and their web services) can be lowered. After collecting the information of (web) domains that exhibit different TLS versions and cryptographic options depending on clients' locations, we show that it is possible to redirect TLS handshake messages to weak TLS servers, which both the origin server and the client may not be aware of. We investigate 7M domains with these spatial differences of security levels in the wild and conduct the analyses to better understand the root causes of this phenomenon. We also measure redirection delays at various locations in the world to see whether there are noticeable delays in redirections.N

    Optimizing process parameters for hot forging of Ti-6242 alloy: A machine learning and FEM simulation approach

    No full text
    In this study, we investigated the hot deformation behavior of Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) alloy and propose a method to derive optimal hot process parameters for grain refinement and avoidance of flow instability. Microstructural Risk Index (MRI) was introduced as a microstructural evaluation index consisting of grain size, standard deviation of grain size, and flow instability. The initial temperature of the material and the stroke speed of the die were selected as design variables. Finite element analysis (FEA) was used to calculate grain size and flow instability and determine MRI of the forgings. The grain size model coefficient and flow instability were calculated based on the flow stress curve and verified with optical microscope (OM) and electron backscatter diffraction (EBSD) analysis results. The Deep Neural Network (DNN) model was used to determine the optimal process parameters for the forging process. The MRI prediction accuracy of the trained DNN models showed excellent performance at 97.01 %. The MRI of the optimized process variables was improved by 7.95 % compared to the minimum MRI of the training data set. Optimized process parameters can improve the quality of forgings through grain refinement and avoidance of flow instability regions

    SR Proteins Induce Alternative Exon Skipping through Their Activities on the Flanking Constitutive Exons▿

    No full text
    SR proteins are well known to promote exon inclusion in regulated splicing through exonic splicing enhancers. SR proteins have also been reported to cause exon skipping, but little is known about the mechanism. We previously characterized SRSF1 (SF2/ASF)-dependent exon skipping of the CaMKIIδ gene during heart remodeling. By using mouse embryo fibroblasts derived from conditional SR protein knockout mice, we now show that SR protein-induced exon skipping depends on their prevalent actions on a flanking constitutive exon and requires collaboration of more than one SR protein. These findings, coupled with other established rules for SR proteins, provide a theoretical framework to understand the complex effect of SR protein-regulated splicing in mammalian cells. We further demonstrate that heart-specific CaMKIIδ splicing can be reconstituted in fibroblasts by downregulating SR proteins and upregulating a RBFOX protein and that SR protein overexpression impairs regulated CaMKIIδ splicing and neuronal differentiation in P19 cells, illustrating that SR protein-dependent exon skipping may constitute a key strategy for synergism with other splicing regulators in establishing tissue-specific alternative splicing critical for cell differentiation programs

    Stable n-type doping of graphene via high-molecular-weight ethylene amines

    No full text
    We demonstrate a stable and strong n-type doping method to tune the electrical properties of graphene via vapor phase chemical doping with various high-molecular-weight ethylene amines. The resulting carrier concentration after doping with pentaethylenehexamine (PEHA) is as high as -1.01 x 10(13) cm(-2), which reduces the sheet resistance of graphene by up to similar to 400% compared to pristine graphene. Our study suggests that the branched structure of the dopant molecules is another important factor that determines the actual doping degree of graphene

    Confocal laser scanning microscopy as a real-time quality-assessment tool for industrial graphene synthesis

    Get PDF
    For the industrial quality control (QC) of the chemical vapor deposition (CVD) graphene, it is essential to develop a method to screen out unsatisfactory graphene films as efficiently as possible. However, previously proposed methods based on Raman spectroscopy or optical imaging after chemical etching are unable to provide non-invasive and fast analysis of large-area graphene films as grown on Cu foil substrates. Here we report that the reflection mode of confocal laser scanning microscopy (CLSM) provides a high-contrast image of graphene on Cu, enabling the real-time evaluation of the coverage and quality of graphene. The reflectance contrast,Rc, was found to be dependent on the incident laser wavelength, of which the maximum was obtained at 405 nm. In addition,Rcdecreases with increasing defect density of graphene. The dependence ofRcon the graphene's quality and laser wavelengths were explained by the tight-binding model calculation based on the Fresnel's interference formula. Thus, we believe that the reflection mode CLSM would be a very powerful quality-assessment tool for the mass production of CVD graphene films grown on Cu.

    Na +

    No full text

    Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation

    No full text
    Negatively charged multi-walled carbon nanotubes (MWCNTs) were prepared using simple sonication technique with non-toxic citric acid (CA) for the electrochemical detection of dopamine (DA). CA/MWCNTs were placed on glassy carbon (GC) electrodes by drop-casting method and then electrochemical determinations of DA were performed in the presence of highly concentrated ascorbic acid (AA). For the comparison of the charge effect on MWCNTs surface, positively charged polyethyleneimine (PEI)/MWCNT/GC electrode and pristine MWCNT/GC electrode were also prepared. Contrary to conventional GC electrode, all three types of MWCNT modified electrodes (CA/MWCNT/GC, PEI/MWCNT/GC, and pristine MWCNT/GC) can discriminate ~μM of DA from 1 mM AA using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) due to the inherent electrocatalytic effect of MWCNTs. Compared to positively charged PEI/MWCNT/GC and pristine MWCNT/GC electrodes, negatively charged CA/MWCNT/GC electrode remarkably enhanced the electrochemical sensitivity and selectivity of DA, showing the linear relationship between DPV signal and DA concentration in the range of 10-1000 nM even in the presence of ~105 times concentrated AA, which is attributed to the synergistic effect of the electrostatic interaction between cationic DA molecules and negatively charged MWCNTs and the inherent electrocatalytic property of MWCNT. As a result, the limit of detection (LOD) of DA for CA/MWCNT/GC electrode was 4.2 nM, which is 5.2 and 16.5 times better than those for MWCNT/GC electrode and PEI/MWCNT/GC electrode even in the presence of 1 mM AA. This LOD value for DA at CA/MWCNT/GC electrode is one of the lowest values compared to the previous reports and is low enough for the early diagnosis of neurological disorder in the presence of physiological AA concentration (~0.5 mM). In addition, the high selectivity and sensitivity of DA at CA/MWCNT/GC electrode were well kept even in the presence of both 1 mM AA and 10 μM uric acid (UA) as similar as neurophysiological concentration. © 2015 Elsevier B.V. All rights reserved.

    Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy

    No full text
    Lithium-sulfur batteries have theoretical specific energy higher than state-of-the-art lithium-ion batteries. However, from a practical perspective, these batteries exhibit poor cycle life and low energy content owing to the polysulfides shuttling during cycling. To tackle these issues, researchers proposed the use of redox-inactive protective layers between the sulfur-containing cathode and lithium metal anode. However, these interlayers provide additional weight to the cell, thus, decreasing the practical specific energy. Here, we report the development and testing of redox-active interlayers consisting of sulfur-impregnated polar ordered mesoporous silica. Differently from redox-inactive interlayers, these redox-active interlayers enable the electrochemical reactivation of the soluble polysulfides, protect the lithium metal electrode from detrimental reactions via silica-polysulfide polar-polar interactions and increase the cell capacity. Indeed, when tested in a non-aqueous Li-S coin cell configuration, the use of the interlayer enables an initial discharge capacity of about 8.5 mAh cm−2 (for a total sulfur mass loading of 10 mg cm−2) and a discharge capacity retention of about 64 % after 700 cycles at 335 mA g−1 and 25 °C. © 2022, UChicago Argonne, LLC, Operator of Argonne National Laboratory.TRU
    corecore