30 research outputs found

    Immunogenicity and Safety of Diphtheria-tetanus Vaccine in Adults

    Get PDF
    This study was conducted to evaluate the immunogenicity and safety of diphtheria-tetanus (Td) vaccine in adults over 40 yr old who had never received a diphtheria-tetanus-pertussis (DTP) vaccination. A total of 242 subject completed three-doses of Td vaccination and subsequent assays for immunogenicity. Before vaccination, 33.9% and 96.7% participants showed antibody levels of diphtheria and tetanus, respectively, which were below protective level (<0.1 U/mL). After the first dose of Td vaccine, 92.6% and 77.6% of subjects gained protective antibody concentrations (≥0.1 U/mL) for diphtheria and tetanus, with an increase to 99.6% and 100% after the third dose. Local and systemic adverse events occurred in 37.9% and 15.5% of the subjects. No serious adverse event requiring an unscheduled hospital visit occurred. In conclusion, three-doses of Td vaccination to unimmunized adults are safe and effective in inducing protective immunity against diphtheria and tetanus

    Effectiveness of COVID-19 XBB.1.5 monovalent mRNA vaccine in Korea: interim analysis

    Get PDF
    As coronavirus disease-2019 (COVID-19) becomes an endemic disease, the virus continues to evolve and become immunologically distinct from previous strains. Immune imprinting has raised concerns about bivalent mRNA vaccines containing both ancestral virus and Omicron variant. To increase efficacy against the predominant strains as of the second half of 2023, the updated vaccine formulation contained only the mRNA of XBB.1.5 sublineage. We conducted a multicenter, test-negative, case-control study to estimate XBB.1.5 monovalent vaccine effectiveness (VE) and present the results of an interim analysis with data collected in November 2023. Patients who underwent COVID-19 testing at eight university hospitals were included and matched based on age (19-49, 50-64, and ≥65 years) and sex in a 1:1 ratio. VE was calculated using the adjusted odds ratio derived from multivariable logistic regression. Of the 992 patients included, 49 (5.3%) received the XBB.1.5 monovalent vaccine at least 7 days before COVID-19 testing. Patients with COVID-19 (cases) were less likely to have received the XBB.1.5 monovalent vaccine (case 3.5% vs. control 7.2%, p=0.019) and to have a history of COVID-19 within 6 months (2.2% vs. 4.6%, p=0.068). In contrast, patients with COVID-19 were more likely to be healthcare workers (8.2% vs. 3.0%, p=0.001) and to have chronic neurological diseases (16.7% vs. 11.9%, p=0.048). The adjusted VE of the XBB.1.5 monovalent mRNA vaccine was 56.8% (95% confidence interval: 18.7-77.9%). XBB.1.5 monovalent mRNA vaccine provided significant protection against COVID-19 in the first one to two months after vaccination

    Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution.</p> <p>Results</p> <p>For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, <it>Cucullanus robustus </it>(13,972 bp) representing Ascaridida, <it>Wellcomia </it><it>siamensis </it>(14,128 bp) representing Oxyurida, and <it>Heliconema longissimum </it>(13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result.</p> <p>Conclusion</p> <p>The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3<sup>rd </sup>positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.</p

    >

    No full text

    In Vivo 3D Meibography of the Human Eyelid Using Real Time Imaging Fourier-Domain OCT

    Get PDF
    <div><p>Recently, we reported obtaining tomograms of meibomian glands from healthy volunteers using commercial anterior segment optical coherence tomography (AS-OCT), which is widely employed in clinics for examination of the anterior segment. However, we could not create 3D images of the meibomian glands, because the commercial OCT does not have a 3D reconstruction function. In this study we report the creation of 3D images of the meibomian glands by reconstructing the tomograms of these glands using high speed Fourier-Domain OCT (FD-OCT) developed in our laboratory. This research was jointly undertaken at the Department of Ophthalmology, Seoul St. Mary's Hospital (Seoul, Korea) and the Advanced Photonics Research Institute of Gwangju Institute of Science and Technology (Gwangju, Korea) with two healthy volunteers and seven patients with meibomian gland dysfunction. A real time imaging FD-OCT system based on a high-speed wavelength swept laser was developed that had a spectral bandwidth of 100 nm at the 1310 nm center wavelength. The axial resolution was 5 µm and the lateral resolution was 13 µm in air. Using this device, the meibomian glands of nine subjects were examined. A series of tomograms from the upper eyelid measuring 5 mm (from left to right, B-scan) × 2 mm (from upper part to lower part, C-scan) were collected. Three-D images of the meibomian glands were then reconstructed using 3D “data visualization, analysis, and modeling software”. Established infrared meibography was also performed for comparison. The 3D images of healthy subjects clearly showed the meibomian glands, which looked similar to bunches of grapes. These results were consistent with previous infrared meibography results. The meibomian glands were parallel to each other, and the saccular acini were clearly visible. Here we report the successful production of 3D images of human meibomian glands by reconstructing tomograms of these glands with high speed FD-OCT.</p></div

    The 3D meibomian gland of subject C (67 years old, male) with severe MGD (meiboscore grade 3).

    No full text
    <p>A: The 3D images showed a few meibomian glands with a normal grape-like pattern. We could not find definite acini attached to the central ducts. B: These findings are consistent with the noncontact infrared meibography, which showed nearly complete loss of the meibomian glands.</p

    The findings in 3D morphology of meibomian gland of the seven patients with meibomian gland dysfunction.

    No full text
    <p>The findings in 3D morphology of meibomian gland of the seven patients with meibomian gland dysfunction.</p

    The 3D meibomian gland of subject E (a 31-year-old male) with severe MGD (meiboscore grade 3) and graft-<i>versus</i>-host disease.

    No full text
    <p>A: We found few meibomian glands with normal morphology, but observed spindle-shaped or globular structures instead; B: The 3D meibomian gland image was consistent with the meibomian glands in the rectangle in the infrared image.</p

    The 3D meibomian glands of healthy subject B (30 years old, male).

    No full text
    <p>A: There were extensive networks of branching structures between parallel groups of meibomian glands; B: We could not find the networks in the infrared images of meibomian gland.</p

    The meibomian glands of the left upper lid of the subject A by modified infrared Meibography (A: ×10; B: ×25).

    No full text
    <p>The meibomian glands of the left upper lid of the subject A by modified infrared Meibography (A: ×10; B: ×25).</p
    corecore