17 research outputs found

    The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Get PDF
    Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC) films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII) technique using acetylene (C2H2) and tetrafluoromethane (CF4) as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys

    Coating-substrate-simulations applied to HFQ ®

    No full text
    In this paper a comparative analysis of coating-substrate simulations applied to HFQTM forming tools is presented. When using the solution heat treatment cold die forming and quenching process, known as HFQTM, for forming of hardened aluminium alloy of automotive panel parts, coating-substrate-systems have to satisfy unique requirements. Numerical experiments, based on the Advanced Adaptive FE method, will finally present

    The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    No full text
    Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC) films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII) technique using acetylene (C 2 H 2 ) and tetrafluoromethane (CF 4 ) as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks' solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys

    Effect of pulse frequency on the surface properties and corrosion resistance of a plasma-nitrided Ti-6Al-4V alloy

    No full text
    In this work, Ti-6Al-4V alloy, commonly used as implant material in biomedical applications, was treated by plasma nitriding. The nitriding process was carried out using an N _2 -H _2 plasma (1000:500 sccm) at an operating pressure of about 866 Pa. The current regulation was about 1.8 A, the negative voltage was about 480–500 V, and the power was 840–940 W. The nitriding temperature was maintained at 650 ± 5 °C, and the nitriding time was 240 min. Bipolar pulse frequencies were varied at 25, 50, 100, 150, and 200 kHz. Analysis by grazing incidence x-ray diffraction spectrometer (GI-XRD) revealed the presence of δ -TiN and ε -Ti _2 N phases in all nitrided samples. The hardness depth profile was measured with a penetration depth of about 5 nm using the enhanced stiffness procedure (ESP). The results showed that all the nitrided samples had a surface hardness approximately three times that of the unnitrided sample. This result is consistent with that from glow discharge emission spectroscopy (GD-OES), which confirmed the diffusion distance of nitrogen atoms from the surface of about 5 μ m. After plasma nitriding, the surface roughness tended to increase, resulting in an increase in the water contact angle (WCA) and a decrease in the work of adhesion. The specific wear rate (ball-on-disk) of all nitrided samples decreased and was significantly lower at a bipolar pulse frequency of 50 kHz. This result is consistent with the stability of the coefficient of friction (COF) after 6000 sliding cycles. Moreover, the nitrided sample at 50 kHz exhibited the lowest corrosion current density in artificial saliva based on the Tafel potential polarization method
    corecore